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ABSTRACT 

Left ventricular (LV) remodeling is nominally an adaptive process that restores 

biomechanical function following myocardial injury and/or sustained alterations in loading 

conditions. This remodeling can materialize as changes in myocardial geometry, 

composition, and mechanical properties. When these changes fail to restore LV 

biomechanical function, remodeling is termed maladaptive. It is generally accepted that 

maladaptive LV remodeling underlies the progression to heart failure in various forms of 

heart disease. The central hypothesis of this study is that we can leverage 

echocardiographic imaging techniques to non-invasively quantify changes in 

biomechanical function and mechanical properties in a serial manner throughout the 

progression towards heart failure. The corollary to this hypothesis is that the observed 

changes in function and mechanical properties can, at least in part, be attributed to a 

reorganization of collagen within the extracellular matrix. Large animal models of 

myocardial infarction and left ventricular pressure overload were integrated with 

echocardiographic imaging, computational modeling, and multi-photon microscopy to test 

this hypothesis. We posit that this delineation of disease-specific LV remodeling outcomes, 

with focus on regional mechanical changes throughout the myocardium, will promote 

translational strategies that can interrupt this deterministic process. 
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CHAPTER 1 

INTRODUCTION – MECHANOBIOLOGY OF THE HEART 

1.1 BASIC ANATOMY AND PHYSIOLOGY 

The heart, a muscular organ located in the center of the thoracic cavity, will beat 

up to 10,000 times in a single day or three billion times over the average lifespan of a 

human. The primary function of the heart is to serve as the pump in the cardiovascular 

system which is responsible for delivering oxygen-rich blood and nutrients to every cell in 

the body via the vascular network of arteries and veins. This circulation of blood is vital to 

sustaining life. 

1.1.1 The Four Chambers of the Heart 

The internal anatomy of the heart reveals four chambers composed of cardiac 

muscle (Figure 1.1). The four chambers of the heart are separated into two halves by a 

central wall, the septum. Each half of the heart functions as an independent pump that 

consists of an atrium and a ventricle. The atria receive incoming blood from the venous 

system and the ventricles propel the blood through the arterial system in a continuous loop 

(Figure 1.2). The key function of the right side of the heart is to receive unoxygenated 

blood from the entire body and deliver it through the pulmonary circulatory system to the 

lungs for oxygenation. Once the oxygenated blood returns to the heart through the left 
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atrium, it is then actively pumped through to the entire body via the mechanical force 

resulting from the contraction of the left ventricular myocardium. 

The major blood vessels emerge from the base of the heart. The inferior and 

superior vena cava terminate at the right atrium to return blood to the heart from the rest of 

the body. The pulmonary trunk, or pulmonary artery, delivers blood to the lungs from the 

right ventricle. Oxygenated blood returns to the heart from the lungs via the pulmonary 

vein at the left atrium. Finally, blood is delivered from the left ventricle to the rest of the 

body first through the ascending aorta. Superficially on the surface of each of the ventricles 

is a network of coronary arteries and veins which supply blood to and from the heart muscle 

itself. The left anterior descending artery and the left circumflex artery deliver the vast 

majority of the oxygenated blood to the left ventricular myocardium so as to ensure it can 

function properly as a pump. 

The flow of blood through the heart is unidirectional. This is made possible by two 

sets of valves which prevent the backward flow of blood. Between each atrium and 

ventricle is an atrioventricular valve. These thin flaps of tissue are attached to the base of 

the atrioventricular union by a ring of connective tissue. The ends of the valves on the 

ventricular side are attached to collagenous tendons, the chordae tendineae. These chordae 

tendineae terminate inside the ventricles at a muscle mass called the papillary muscle. 

While this papillary muscle plays no role in the opening of the valves, its primary function 

is to stabilize the valves and prevent inversion during ventricular contraction. While similar 

in function, the two atrioventricular valves are not identical. The valve separating the right 

atrium and right ventricle is called the tricuspid valve in reference to its three distinct flaps. 

Alternatively, the atrioventricular valve separating the left atrium and left ventricle only 
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has two flaps and is accordingly called the bicuspid valve. This bicuspid valve is more 

commonly referred to as the mitral valve in reference to its resemblance to the tall 

headdress worn by bishops and senior clergy, a miter. Distal to each of the two ventricles 

is a semilunar valve preventing the backflow of blood from the arteries to the ventricles. 

Each semilunar valve has three cuplike leaflets which snap closed when the pressure inside 

of the ventricle drops during ventricular relaxation. 

1.1.2 Composition of the Heart 

The heart is encased in a tough membranous sac known as the pericardium. The 

pericardium is attached to the diaphragm and is filled with pericardial fluid that protects 

the heart and functions similarly to a lubricant. Additionally, this pericardial sac limits the 

rigid body motion of the heart. The outermost layer of the heart itself is primarily composed 

of collagenous matrix with some embedded elastic fibers. A cross-section of the heart 

reveals that there are two additional layers, the middle myocardium and a deep lining called 

the endocardium. The endocardium is a thin sheet of epithelium that lines the heart and 

constitutes the valves of the heart. On the other hand, contractile cardiac myocytes make 

up the bulk of the myocardium and are generally 120 µm long and 20-30 µm in diameter. 

These cardiac myocytes are arranged in a locally parallel manner and are embedded in an 

extracellular matrix consisting primarily of collagen. While relatively parallel on a local 

level, the myocytes are arranged in a spiraled helix that varies transmurally from the 

endocardium to the epicardium such that the cardiac myocytes can generate sufficient force 

to direct the proper flow of blood through the cardiovascular system. 
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1.1.3 Contraction of the Heart 

Much like skeletal muscle, cardiac muscle is excitable and can generate an action 

potential. Unlike an innervated skeletal muscle, however, the signal for contraction is 

generated by specialized non-contractile cardiac cells called autorhythmic cells. These 

autorhythmic cells are commonly referred to as the pacemaker cells. These autorhythmic 

cells have an unstable membrane potential which begins at -60 mV and gradually becomes 

less negative until it reaches a threshold and ultimately triggers an action potential. This 

action potential, originated by the pacemaker cells in the sinoatrial and atrioventricular 

nodes, is conducted to the contractile cardiac myocytes. This electrical signal is then 

converted to a mechanical response (i.e. contraction of the muscle) through a process called 

excitation-contraction coupling. In this process, calcium ions from the sarcoplasmic 

reticulum and the extracellular fluid are released and then bind to troponin – thereby 

initiating the formation of actin-myosin cross-bridges and the contraction of the cell 

1.1.4 The Cardiac Cycle 

The cardiac cycle is the sequence of rhythmic events including the contraction and 

relaxation of each of the four chambers of the heart to pump blood through the 

cardiovascular system. The beginning of the cardiac cycle is commonly marked with the 

brief moment at which all four chambers are relaxing. In this moment, the atria are filling 

with blood from the veins. Meanwhile, active ventricular ejection has just been completed. 

Subsequently, the atrioventricular valves open and blood is passively transferred to the 

ventricles down the hydrostatic pressure gradient with the assistance of gravity. The final 

twenty percent of ventricular filling is accomplished as the atria contract and forcibly eject 

into the ventricles. Ventricular systole then begins and the rapid elevation in pressure 
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pushes against the underside of the atrioventricular valves and forces them closed so that 

blood does not flow back in the atria. With both the atrioventricular and semilunar valves 

closed, the cardiomyocytes of the left ventricle continue to contract in what is referred to 

as isovolumic ventricular contraction. Subsequently, the resultant generation of pressure 

forces the semilunar valves to open and the blood is pushed in to the arteries. This is 

referred to as ventricular ejection. The force generated by this ventricular contraction 

becomes the driving force for blood flow. The high-pressure blood forced in to the arteries 

then displaces the stagnant low-pressure blood and forces that blood further into the 

vasculature. At the end of ventricular ejection, the ventricles begin to relax, and 

intraventricular pressure is reduced. Once the pressure in the arteries exceeds that of the 

ventricle, the semilunar valves are forced shut by the backflow of blood from the arteries. 

While the ventricles relax and the intraventricular pressure continues to fall, isovolumic 

ventricular relaxation occurs. Once the atrial pressure exceeds that of the ventricle, the 

atrioventricular valves open and initiate the beginning of the next cardiac cycle. This 

process is summarized in the widely-accepted Wigger’s Diagram (Figure 1.3) which 

illustrates the coordination of cardiac events and the resultant relationships between 

hydrostatic pressure, chamber volumes, and electrical impulses. The entire cardiac cycle is 

customarily simplified into two distinct phases: systole and diastole. In the left ventricle, 

the onset of systole is conventionally defined as the time of the mitral valve closure or the 

by the peak of the QRS complex (i.e. R) on the electrocardiographic signal. The end of 

systole and the subsequent onset of diastole is conventionally defined as the end of 

ventricular ejection. Finally, diastole is used to define the entire ventricular filling phase. 
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1.2 CLINICAL EVALUATION OF HEART STRUCTURE AND FUNCTION 

Given the vital importance of the function of the heart to sustaining life, there is an 

obvious need for techniques that allow for the measurement of the myriad of geometric 

and functional parameters of the heart in a clinical setting. Advancements in both hardware 

and software over the years have given rise to a variety of clinically-translatable modalities 

for this very purpose. 

1.2.1 Echocardiography 

At present, echocardiography is the most clinically-accessible modality to assess 

the structure and function of the heart.1 In short, echocardiography uses ultrasonic waves, 

in the order of MHz, to provide a real-time image of the beating heart. The ultrasonic beam 

is produced by a transducer probe and directed towards the region of interest using a 

transthoracic or transesophageal approach. As the sound waves are intersected by tissues 

with varying densities, these sound waves are reflected back on the transducer. The 

detected backscatter will be higher in magnitude for tissues with a higher density. The real-

time processing of this backscatter on the ultrasound device allows for a non-invasive 

bedside visualization of the structure and function of the heart. 

Current guidelines for the clinical use of echocardiography reveal that the most 

common use-case for echocardiography is for the assessment of left ventricular (LV) 

systolic function and diastolic function.2 The most commonly reported quantitative 

measure of global LV systolic function is the ejection fraction (EF) defined as 

𝐸𝐹 =
𝑉𝐸𝐷−𝑉𝐸𝑆

𝑉𝐸𝐷
× 100%. (1.1) 
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This measurement of EF is reliant on the measurements of LV volumes at end diastole 

(𝑉𝐸𝐷) and end systole (𝑉𝐸𝑆) determined most commonly from Simpson’s biplane method 

of disks.3 Along with LV EF and volumes, echocardiography also allows for the 

quantification of LV internal diameters and wall thicknesses. These measurements give 

rise to an estimation of LV mass originally proposed by Devereux et al in 1986 of the form 

𝐿𝑉 𝑚𝑎𝑠𝑠 = 0.8{1.04[([𝐿𝑉𝐸𝐷𝐷 + 𝐼𝑉𝑆𝑑 + 𝑃𝑊𝑑]3 − 𝐿𝑉𝐸𝐷𝐷3)]} + 0.6, (1.2) 

where LVEDD, IVSd, and PWd represent LV, intraventricular septal, and posterior wall 

thickness at end diastole, respectively.4  

Going beyond measures of structure and function derived from geometric 

measurements, Doppler principles have been applied to echocardiographic analysis to 

allow for quantitative measurements of the hemodynamics in the heart to evaluate global 

diastolic function.5 The phenomena first observed by Doppler in the 19th century was that 

the frequency of a wave can be altered by a moving target acting as interference. In regard 

to its applicability to cardiac evaluation, the ultrasonic waves emitted by the 

echocardiographic probe are altered by the movement of red blood cells in such a way that 

we can derive a complete picture of the cardiac flow field from an analysis of the detected 

backscatter. Furthermore, the emitted frequency can be tuned for different applications. A 

pulse-wave Doppler analysis has a high spatial resolution but encounters error when 

measuring high-velocity flow. Meanwhile, continuous-wave Doppler excels at accurately 

detecting high-velocity flow, but only flow in the direct line of the emitted signal.6 While 

most commonly applied to fluid analysis, the same principles can also be applied to 

structural analysis where the tissue serves as the interference for the frequency rather than 

the red blood cells. Through a combinatorial approach of both fluid Doppler and tissue 
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Doppler, we can measure mean pulmonary capillary wedge pressure (PCWP), an indirect 

estimate of LV diastolic pressure, using the techniques first proposed by Nagueh et al in 

1997 of the form 

𝑃𝐶𝑊𝑃 = 1.91 + 1.24 ×
𝐸

𝐸𝑎
, (1.3) 

where 𝐸 is the peak transmitral flow velocity of early left ventricular filling and 𝐸𝑎 is the 

velocity of the movement of the mitral annulus at the lateral site early in diastole. 

The most recent advancement to be applied to echocardiographic analysis of the 

heart is that of strain imaging through speckle tracking echocardiography (STE). An early 

study by Leitman et al in 2004 laid the groundwork for this technology with the initial 

observation that intrinsic acoustic markers in the myocardium, or speckles, visible in 

echocardiographic images were stable throughout the cardiac cycle.7 With this observation, 

a tracking algorithm was developed to track the movement of the spatial mesh of acoustic 

markers throughout the cardiac cycle to allow for an accurate measurement of strain in the 

myocardium. Measurements of segmental strain (ε) are calculated as 

𝜀 =
𝐿−𝐿0

𝐿0
=

∆𝐿

𝐿0
 , (1.4) 

where 𝐿 is the length of a particular myocardial segment and 𝐿0 is the length of that segment 

at end diastole. Over the years, this quantitative technique has been applied with increasing 

regularity for both global and regional analysis of left ventricular function and mechanical 

behavior.8 The utilization of different echocardiographic views makes it possible to 

determine the full field of LV strain in the circumferential, longitudinal, and radial 

directions.  
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1.2.2 Cardiac Magnetic Resonance Imaging 

While echocardiographic analysis is certainly more clinically-accessible, the long-

heralded gold standard for the evaluation of cardiac structure and function is cardiac 

magnet resonance imaging (cMRI). The most prominent advantage that cMRI has over 

echocardiography is that it is not limited to acoustic windows. The quality of an 

echocardiographic image varies greatly depending on factors such as anatomical 

interference (e.g. the location of the lungs) or the degree of obesity of an individual patient. 

The magnetic field applied in cMRI applications can penetrate through these interferences 

and capture the entirety of the heart. Furthermore, the application of techniques such as 

cMRI tagging allows for high-fidelity measurements of deformation throughout the 

heart.9,10 Nevertheless, the high cost and long examinations times has severely limited the 

clinical use of cMRI for the assessment of cardiac structure and function.11   

 

1.3 MECHANICAL ASSESSMENT OF THE HEART 

Under normal and pathological conditions, the function of the heart is governed and 

regulated by the underlying mechanics of both the structure and the myocardium. Broadly 

speaking, mechanics refers to the relationship between the forces applied to an object and 

the translation, rotation, and deformation resulting from these applied forces. In the living 

heart, the total mechanical behavior would be defined as the sum of both the active 

mechanics resulting from the contractile cardiac myocyte and the passive mechanics of the 

completely relaxed myocardium. While there is interrelation between these two forces, for 

the purposes of this review, we focus only on the passive mechanics of the myocardium.  
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An understanding of the relationship between the passive mechanical properties of the 

heart and their effect on function is the central goal of cardiac mechanics research. 

1.3.1 Benchtop (ex-vivo) Analysis 

The majority of the early work characterizing the mechanics of the passive 

myocardium came from uniaxial tests on excised pieces of cardiac tissue.12,13 Despite the 

significance of this early work, further investigation into the locally heterogeneous 

structure of the myocardium gave rise to a need to move beyond an assumption of isotropic 

behavior. To that end, studies using biaxial test setups would later show that the passive 

myocardium exhibits an anisotropic behavior that varies from region to region.14 This work 

gave rise to a “golden-era” of cardiac mechanics research from 1980-2000 where a number 

of constitutive models were developed to link the states of stress and strain in the passive 

myocardium.15–20 Further work was completed by Zile and colleagues to isolate the cardiac 

myocyte and perform tensile testing and eventually define constitutive relations for the 

isolated myocyte. While there is clear value in these monumental studies, no one 

experiment is comprehensive. It must be considered that the excision of these tissues 

influences hormonal factors and control of the nervous system and ultimately the properties 

of the cardiac myocytes, the myocardium, and the heart as a whole. 

1.3.2 Clinical (in-vivo) Analysis 

Technological advancements over the last few decades have made it possible to 

perform mechanical analysis for clinical research. One of the most important advancements 

in that time was the advent of sensitive cardiac catheters for the measurement of 

intraventricular pressures. The use of these catheters along with image modalities such as 

angiography or echocardiography allowed for detailed analysis of the relationship between 
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pressure and volume throughout the cardiac cycle. Early work by Mirsky and 

Pasipoularides laid the foundation for this work.21,22 They first introduced the concept of 

calculating an index of LV chamber stiffness of the form 

𝑃 = 𝑃0𝑒
𝐾𝐶

𝑉

𝑉𝑊, (1.5) 

where 𝑃 is the intraventricular pressure, 𝑃0 is a fitting parameter, 𝐾𝐶 is the chamber 

stiffness, 𝑉 is the volume of the ventricular chamber, and 𝑉𝑊 is the volume of the wall. 

This measurement of chamber stiffness, a structural index that is a function of geometry 

and local material properties, has proven to be a valuable index of diastolic function.23 On 

a local level, Janz introduced a method by which to quantify local myocardial wall stress 

𝜎 =
𝑃𝑟2

2𝑡(𝑠𝑖𝑛𝜃)(𝑟+
𝑡(𝑠𝑖𝑛𝜃)

2
)
, (1.6) 

where 𝑃 is the intraventricular pressure, 𝑟 is the local radius, 𝑡 is the local thickness, and 𝜃 

is angle between the normal vector from the endocardium at the region of interest and the 

axis of revolution in the truncated ellipsoid model.24 Since then, the major push in the in-

vivo analysis of cardiac mechanics has come by way of advanced finite element analysis. 

The work by Costa, Wenk, and others of the normal and diseased heart serves as 

demonstration that detailed biomechanical analysis using computational tools is feasible, 

albeit at the cost of computational time, the need for expert analysis, and expensive 

hardware resources.25–29 There is a clear need for this type of technology to be made more 

clinically accessible and practical for the routine analysis of cardiac mechanical function. 
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1.4 HEART FAILURE – ONE SYNDROME WITH MULTIPLE ETIOLOGIES 

1.4.1 Clinical Relevance 

An all-too-common pathway for a host of cardiac disorders is a progression towards 

heart failure. Heart failure is a complex clinical syndrome that can result from any 

structural or functional cardiac disorder that impairs the ability of the ventricle to fill with 

or eject blood. The rate and incidence of the development and progression of heart failure 

continues to escalate, and recent statistics have identified this disease as the leading cause 

of morbidity and mortality – eclipsing all other chronic diseases.30 While significant 

progress has been achieved in the therapeutic management of other major illnesses such as 

cancer, these advancements have not been forthcoming for heart failure. One likely reason 

for this is that, unlike cancer which is classified by morphology, cell type, and 

molecular/genetic profiles, heart failure has been historically considered as a single entity. 

However, it has become recognized that distinctly different etiologies for the presentation 

of these heart failure symptoms exist, which, in turn, have demonstrated distinctly different 

therapeutic responses and clinical outcomes.31 A recent consensus has emerged that a 

generalized dichotomy can be made for the classification of heart failure through the 

evaluation of LV EF.32 Specifically, heart failure patients presenting with a LV EF below 

45% would be classified as heart failure with reduced ejection fraction (HFrEF). 

Alternatively, those heart failure patients with a normal LV EF (i.e. greater than 45%) 

would be classified as heart failure with preserved ejection fraction (HFpEF). It has been 

found that the prevalence of these two phenotypes of heart failure is equally distributed.31 

Furthermore, long-term morbidity and mortality rates between the two phenotypes are 

virtually indistinguishable.33 Ultimately, these trends warrant further investigation so as to 
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delineate the pathophysiological mechanisms which give rise to each phenotype of heart 

failure (Table 1.1). Though the progression to heart failure is unequivocally multi-factorial 

in nature, the changes associated with both types of heart failure can be attributed to the 

cumulative alterations in geometry, composition, and function; defined as remodeling. 

1.4.2 Systolic Heart Failure (HFrEF) 

Systolic heart failure, commonly referred to as HFrEF, is a clinical syndrome 

characterized by a dilation of the left ventricle and impaired systolic pump function. HFrEF 

is an all-too-common sequela of myocardial infarction (MI). A MI occurs secondary to an 

acute coronary event which functionally cuts off the flow of oxygen-rich blood to the area 

of the myocardium supplied by that vessel. This local ischemia results in cardiac myocyte 

death and the development of a non-viable and fibrotic scar.34 In the days and weeks that 

follow this acute event, there are progressive changes in the LV geometry on a global (e.g. 

increased end-diastolic volume) and local (e.g. thinning within the MI region and 

hypertrophy of the viable remote region) scale.35–41 Critically, these structural 

abnormalities have a detrimental effect on the systolic function of the LV. This systolic 

dysfunction becomes apparent through an analysis of LV EF as it commonly falls below 

45%.42 This fall in EF can be attributed to several factors such as severe dilation of the LV, 

a high prevalence of non-viable myocardium, and changes in the passive mechanical 

properties of both the MI region and the remote myocardium.41,43,44 Ultimately, the 

inability to meet the metabolic demands of the body through normal pump function  gives 

rise to the presentation of the signs and symptoms of HFrEF. 
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1.4.3 Diastolic Heart Failure (HFpEF) 

Diastolic heart failure, commonly referred to as HFpEF, is a clinical syndrome 

characterized by a presentation of the signs and symptoms of heart failure, abnormal 

diastolic function, and a preserved ejection fraction. Conceptually, HFpEF occurs when 

the LV chamber compliance is reduced to the point at which it can no longer accept an 

adequate volume of blood during the diastolic filling phase. This type of heart failure 

commonly results from an exposure to a prolonged LV pressure overload such as aortic 

stenosis.45 HFpEF that occurs secondary to LV pressure overload results in a thick, 

hypertrophied, left ventricle. Furthermore, this disease is coincident with the presentation 

of abnormal active relaxation. This phenomena becomes apparent through the 

echocardiographic observation of either a prolonged isovolumic relaxation phase or 

delayed active relaxation.46 In addition to active relaxation, the passive mechanical 

properties of the LV myocardium contribute to this presentation of diastolic dysfunction. 

On a structural/chamber level, this is made evident by elevations in chamber stiffness (KC) 

determined from end diastolic pressure-volume relations.3,47,48 On a local material level, 

the determination of regional myocardial stiffness (KM) from stress-strain or stress-

diameter relationships reveals increases in the passive stiffness of the cardiac myocyte and 

the extracellular matrix it is embedded within.42,49 Coupled together, abnormal relaxation 

and increases in stiffness ultimately initiate a cascade of events including elevations in LV 

filling pressures, dilation of the left atrium, and a presentation of the signs and symptoms 

of HFpEF.50,51 
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1.5 DISSERTATION SCOPE AND SPECIFIC AIMS 

The primary goal of this dissertation is to advance the state of knowledge in the 

field in regard to pathophysiological mechanisms which give rise to heart failure and how 

they interrelate with local changes in mechanical behavior and mechanical properties as a 

consequence of disease-induced remodeling. The central hypothesis of this study is that we 

can leverage echocardiographic imaging techniques to non-invasively quantify changes in 

biomechanical function and mechanical properties in a serial manner throughout the 

progression towards heart failure. The corollary to this hypothesis is that the observed 

changes in function and mechanical properties can, at least in part, be attributed to a 

reorganization of collagen within the extracellular matrix. This hypothesis was tested with 

a combinatorial approach of clinically-relevant large animal models of heart failure, novel 

image-processing techniques, and computational modeling. These results provide novel 

information on LV remodeling outcomes in clinically-relevant disease states and lay the 

groundwork for the evaluation of emergent therapeutic strategies that seek to curtail 

adverse remodeling. 

1.5.1 Aim 1 – Quantify regional and temporal changes in left ventricular strain and 

stiffness in a porcine model of myocardial infarction 

For the first time, STE was used to serially track regional biomechanical behavior 

and mechanical properties post-MI. We found that changes initially confined to the MI 

region extended throughout the myocardium in a non-uniform fashion over 28 days post-

MI. We posit that STE-based evaluation of regional changes in LV biomechanics could 

advance both clinical assessment of left ventricular remodeling and therapeutic strategies 

that target aberrant biomechanical behavior post-MI. 
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1.5.2 Aim 2 – Quantify changes in myocardial microstructure and mechanics secondary 

to left ventricular pressure overload 

Left ventricular pressure overload has been shown to give rise to the HFpEF 

phenotype. LVPO was induced in mature pigs by inflation of an implanted ascending aortic 

cuff for up to five weeks. Serial echocardiographic analyses of diastolic function and 

mechanical properties along with terminal histological analysis allowed for a correlative 

analysis of the abnormalities in the microstructural composition of the extracellular matrix 

and these observed changes in structure and function. Our findings support the use of serial 

biomechanical analysis to track the progression of HFpEF and present a translational 

method to stratify patient-specific risk and assess the efficacy of pharmacological and 

therapeutic approaches. 

1.5.3 Aim 3 – Develop a clinically-accessible tool for the identification of the passive 

mechanical properties of the left ventricular myocardium 

Sensitive techniques to track the rate and extent of remodeling are necessary to 

evaluate risk and treatment options on a patient-specific basis throughout the progression 

to heart failure. The technology we have developed is a novel and non-obvious extension 

of two-dimensional STE which allows for the definition of a constitutive relation for the 

regional left ventricular myocardium that links the states of stress and strain. This was 

accomplished through the use of an inverse finite element analysis approach along with a 

novel objective function which accounts for regional differences in strain and thickness. 

This technology allows for a comprehensive biomechanical analysis of the left ventricle to 

be performed in a clinical setting for the assessment of the rate and extent of myocardial 

remodeling in response to heart disease. 
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1.6 TABLES 

 

  

Table 1.1: Features that differentiate HFrEF from HFpEF. 
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1.7 FIGURES 

 

 

 

 

 

  

Figure 1.1: Anatomy of the heart and major blood vessels. 

There are four main chambers to the heart: right atrium, right ventricle, left atrium, and 

left ventricle. The atria and ventricles are separated by atrioventricular valves and the 

semilunar valves prevent backflow of blood from the major arteries to the ventricles. 
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Figure 1.2: Cardiovascular circulation. 

Blood collected in the right atrium is pumped into the right ventricle. Contraction of the 

right ventricle sends the blood through the pulmonary system for oxygenation. After 

oxygenation, the blood returns to the heart through the left atrium. Blood then goes to 

the left ventricle where the force is generated to pump the blood through the rest of the 

body. 

Pulmonary Artery Aorta

Entire

Body
Lungs

Pulmonary Vein
Vena Cava

Right

Atrium

Right

Ventricle

Left

Atrium

Left

Ventricle



www.manaraa.com

  

20 

 

 

 

 

 

 

Figure 1.3: Wigger’s Diagram. 

This diagram is a representation of the electrical and mechanical events of the cardiac 

cycle. By DanielChangMD, revised original work of DestinyQx, redrawn as SVG by 

xavax (Wikimedia Commons, File: Wiggers_Diagram.svg), “Wigger’s Diagram”, 

https://creativecommons.org/licenses/by-sa/2.5/legalcode 
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CHAPTER 2 

REGIONAL AND TEMPORAL CHANGES IN LEFT VENTRICULAR 

STRAIN AND STIFFNESS IN A PORCINE MODEL OF  

MYOCARDIAL INFARCTION  1 
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2.1 ABSTRACT 

The aim of this study was to serially track how myocardial infarction (MI) impacts 

regional myocardial strain and mechanical properties of the left ventricle (LV) in a large 

animal model. Post-MI remodeling has distinct regional effects throughout the LV 

myocardium. Regional quantification of LV biomechanical behavior could help explain 

changes in global function and thus advance clinical assessment of post-MI remodeling. 

The present study is based on a porcine MI model to characterize LV biomechanics over 

28 days post-MI via speckle-tracking echocardiography (STE). Regional myocardial strain 

and strain rate were recorded in the circumferential, radial, and longitudinal directions at 

baseline and at three, 14, and 28 days post-MI. Regional myocardial wall stress was 

calculated using standard echocardiographic metrics of geometry and Doppler-derived 

hemodynamic measurements. Regional diastolic myocardial stiffness was calculated from 

the resultant stress-strain relations. Peak strain and phasic strain rates were nonuniformly 

reduced throughout the myocardium post-MI, while time to peak strain was increased to a 

similar degree in the MI region and border zone by 28 days post-MI. Elevations in diastolic 

myocardial stiffness in the MI region plateaued at 14 days post-MI, after which a 

significant reduction in MI regional stiffness in the longitudinal direction occurred between 

14 and 28 days post-MI. Post-MI biomechanical changes in the LV myocardium were 

initially limited to the MI region but nonuniformly extended into the neighboring border 

zone and remote myocardium over 28 days post-MI. STE enabled quantification of 

regional and temporal differences in myocardial strain and diastolic stiffness, underscoring 

the potential of this technique for clinical assessment of post-MI remodeling. 
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2.2 INTRODUCTION 

 The post-MI period is accompanied by temporal changes in inflammatory-

signaling-proteolytic cascades within the MI region, which in turn give rise to changes in 

LV geometry, composition, and function in a process termed post-MI remodeling 52,53. 

Global changes in LV geometry (e.g., increased EDV) and pump function (e.g., reduced 

EF) are commonly used to assess the relative extent of post-MI remodeling 54–56. However, 

this is a spatially nonuniform process, as myocardial thinning (within the MI region) occurs 

concomitantly with hypertrophy (within the viable remote region) 35,36. As such, improved 

regional assessment of temporal changes throughout the myocardium may enhance clinical 

evaluation of the rate and extent of the post-MI remodeling process.  

In vivo regional mechanical behavior has been assessed post-MI in both basic 

scientific and clinical studies using techniques such as sonomicrometry, cardiac magnetic 

resonance imaging, and tissue Doppler-derived imaging 57–63. While these and other 

approaches have yielded critical information on the post-MI remodeling process, they have 

not been uniformly applied to assess LV regional function across the entire chamber and 

in a serial fashion due to several factors. In  large animal studies using sonomicrometry, 

high spatial and temporal resolution is offset by a limited field of view 58,59. In clinical 

studies, noninvasive approaches such as cardiac magnetic resonance imaging can provide 

high fidelity regional assessment of LV function, but lengthy acquisition and post-

processing times make it impractical to collect repeated measurements 60. Tissue Doppler-

derived imaging has also been applied in both large animal models and clinical settings to 

quantify regional myocardial strain with reported limitations stemming from a significant 

dependency on the angle of the ultrasound beam and low signal-to-noise ratio 61–63.  
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STE, an ultrasound-based technique which tracks the movement of intrinsic 

acoustic markers of the LV, has the potential to address limitations of tissue Doppler 

approaches. Past large animal and clinical studies have demonstrated the feasibility of STE 

in terms of post-MI assessment of LV regional function 64–72. It has been established that 

longitudinal strain patterns can be used to identify regions of ischemic injury and predict 

remodeling outcomes 64,65. Measures of global radial and circumferential strains have 

shown correlation with MI size and can enable differentiation between subendocardial and 

transmural infarction 67–69. STE can also capture the heterogeneous and temporal changes 

in LV strain in the minutes immediately after MI and over more extensive time intervals 

post-MI 70–72. Despite these advancements, there is a paucity of studies that have applied 

STE to serially assess the extent and magnitude of changes in regional strain over the 

critical early remodeling period (up to 28 days post-MI) in a large animal model. 

Furthermore, no studies to date have extended STE to track regional mechanical property 

changes post-MI. The current study utilizes a porcine model of an acute coronary syndrome 

and subsequent MI based on an intracoronary IR approach; STE is then performed up to 

28 days post-MI. We postulate that this combinatorial approach to the in-vivo 

quantification of LV mechanical behavior post-MI will yield novel insight into the 

progression of the post-MI remodeling process and thereby motivate the development of 

therapeutic strategies, which aim to mitigate these adverse effects. 
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2.3 METHODS 

2.3.1 IR Protocol 

Mature pigs (n=8) (Yorkshire, male, 22.0 ± 0.9 kg) were administered amiodarone 

(200 mg PO) and aspirin (81 mg PO) for three days pre-operatively and a broad-spectrum 

antibiotic (Draxxin, 2.5 mg/kg, IM) at least once pre-operatively. On the day of surgery, 

the pigs were sedated (ketamine/acepromazine/atropine: 22/1.1/0.04 mg/kg IM, 

respectively), intubated, and then maintained on 1.5 – 2.0 % isoflurane delivered in an 

oxygen/nitrous mixture (3:1 L/min, respectively). Buprenorphine (0.05 mg/kg IM) was 

administered as pre-surgery analgesia.  An intravenous infusion (via ear vein cannula) of 

Benadryl (25 mg) in conjunction with a continuous lidocaine infusion (4 mg/kg/hr) and 

lactated ringer’s solution (10 mL/kg/hr) was initiated. The region encompassing the right 

femoral artery was prepared in a sterile fashion, the main branch of the femoral artery 

surgically exposed, and a catheter introducer (6F Input Introducer Sheath, Medtronic) 

positioned and stabilized in the artery. A bolus of heparin was administered (4000 units, 

IV) prior to placement of the guide catheter followed by an additional bolus every hour 

(1000 units, IV). Under fluoroscopic guidance (GE OEC 9600, UT), a coronary 

angiography catheter/launcher (5F Launcher guiding catheter .058" HSI, Medtronic) was 

placed in the left coronary ostia, and an angioplasty balloon catheter containing an injection 

lumen (3mm x 10mm Sprinter OTW balloon catheter, Medtronic) was positioned in the 

lower portion of the left anterior descending artery (LAD; defined as 1 cm below the First 

Diagonal). The LAD was occluded by balloon inflation (12 ATM balloon inflation 

pressure, Everest 30 Disposable inflation device, Medtronic) and maintained for 90 

minutes. The balloon was then deflated, and the catheter system disengaged and removed. 
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The femoral artery was ligated, and the incision closed. A transdermal fentanyl patch was 

placed for three days for post-operative analgesia. Prior studies have demonstrated that this 

technique produces a highly-reproducible anteroapical ischemic region resulting in an MI, 

which constitutes approximately 8.7% ± 1.3% of the entire LV at 28 days post-MI 73,74. 

 All experimental protocols were approved by the Institutional Animal Care 

and Use Committees at the University of South Carolina and performed according to the 

National Institutes of Health guidelines for Care and Use of Laboratory Animals. 

2.3.2 Standard Echocardiography 

The day before the animals underwent the IR protocol, they were sedated 

(diazepam, 200 mg PO, Barr Laboratories, Pomona, NY), placed in a custom-designed 

sling, and echocardiography was performed (GE Vivid E9 with XDclear Ultrasound 

System: M5S (1.5-4.6 MHz) transducer probe). Cardiac dimensions and function were 

assessed by two-dimensional echocardiographic studies. The transthoracic images were 

acquired from a right parasternal approach and the LV was imaged in long axis and short 

axis views. The short axis views were taken at the level of the papillary muscles. EDV, 

ESV, and EF were calculated using the biplane method of disks. Pulse-wave Doppler, using 

a sample volume placed at the tips of the mitral valve leaflets, was used to determine the 

peak early mitral inflow velocity (E). Tissue Doppler assessment was used to calculate the 

peak early mitral annular velocity (E’) with a sample volume positioned at the lateral site 

of the mitral annulus. PCWP was calculated using the method proposed by Nagueh et al in 

1997. Additionally, wall thickness was collected at early- and end-diastole for each of the 

six conventional echocardiogram LV segments in the parasternal long-axis and papillary 
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level short-axis. The pigs were returned to the laboratory under identical sedation/study 

conditions at three, 14, and 28 days post-MI. 

2.3.3 Strain Imaging 

Digital loops of the two-dimensional echocardiography for the long axis and 

papillary short axis (acquired at 40 Hz) were stored on a hard disk and transferred to a 

workstation (EchoPac, Vingmed, General Electric) for post-processing. For each digital 

loop, a ROI was defined at the onset of the R-wave by manually identifying the endocardial 

and epicardial borders. The ROI was then discretized with a spatial mesh of acoustic 

clusters to be tracked on a frame-to-frame basis throughout a single cardiac cycle 7. The 

end of systole was defined as the point at which the LV cross-sectional area was at a 

minimum. After the semi-automated grouping of acoustic clusters in accordance with six 

anatomical locations (Figure 2.1A), regional tracking quality was assessed, and the ROI 

was manually adjusted by the operator to improve tracking quality where necessary. 

Successful tracking of the ROI allows for the definition of segmental lengths, which are 

computed at end diastole (L0) and continuously throughout the cardiac cycle (L). Local 

segmental strains (ε) and strain rates (γ) are then computed as: 

𝜀 =
𝐿−𝐿0

𝐿0
=

∆𝐿

𝐿0
      (2.1) 

𝛾 =
(∆𝐿/∆𝑡)

𝐿0
       (2.2) 

where Δt is the relative time in the cardiac cycle. Peak strain, systolic strain rate, and 

diastolic strain rate were quantified in the three normal directions: circumferential 

(papillary short axis), radial (papillary short axis), and longitudinal (long axis). 

Circumferential and longitudinal segmental strains/strain rates were quantified at the 
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epicardial, mid-myocardial, and endocardial surfaces. Global strain values were calculated 

as the mean segmental strain observed in the 18 myocardial segments in the circumferential 

and longitudinal directions and six segments in the radial direction. Obtained segmental 

strain and strain rate data were assessed for intra-observer variance by calculating the intra-

class correlation coefficient for a single operator under the assumption that systematic 

differences are relevant. The intra-class correlation coefficient for all measures of strain 

and strain rate ranged from 0.94 to 0.99. 

2.3.4 Aggregate Regional Definitions 

In this study, each pig had a total occlusion of the LAD. To facilitate data analysis, 

we defined the following aggregate regions: the MI region is all anterior and anteroseptum 

walls; the border zone is the apical and mid posterior, basal septal, and basal lateral walls; 

the remote region is the basal posterior and inferior walls. While the size of the MI region, 

and thus the size and location of the border zone, change over time post-MI, the use of 

consistent regions at all study time points allows for the continuous monitoring of local 

biomechanical changes throughout the myocardium.  

2.3.5 Mean Wall Stresses 

We modified a thick-walled ellipsoidal model proposed by Janz 24 to compute mean 

wall stresses. The mean circumferential wall stress (𝜎𝐶) was computed as:  

𝜎𝐶 =
𝑃𝑟2

2𝑡(𝑟+
𝑡

2
)
  (2.3) 

where (r) is the inner radius, (t) is the wall thickness, and (P) is the LV pressure. For the 

purposes of this study, (P) was assumed to equal zero at the onset on diastole and the PCWP 

at end-diastole.  
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The mean longitudinal wall stress (𝜎𝐿)  was computed as:  

𝜎𝐿 =
𝑃𝑟2

2𝑡(𝑠𝑖𝑛𝜃)(𝑟+
𝑡(𝑠𝑖𝑛𝜃)

2
)
  (2.4) 

where (Φ) is the angle between the normal vector from the endocardium at the ROI and 

the axis of revolution in the truncated ellipsoid model. 

2.3.6 Regional Diastolic Myocardial Stiffness 

Obtained values for mean wall stresses and segmental strains at the onset of diastole 

and end-diastole enabled calculation of regional diastolic myocardial stiffness in both the 

circumferential and longitudinal directions. The slope of the line between these two points 

in the stress-strain plane, developed in either the circumferential or longitudinal direction 

and referenced to the defined anatomical locations, was used to compute the regional 

diastolic myocardial stiffness (KMR) as: 

𝜅𝑀𝑅 =
𝜎𝐸𝐷

|𝜀𝐷0|
      (2.5) 

where 𝜎𝐸𝐷 and 𝜀𝐷0 are the end diastolic mean wall stress and segmental strain at the onset 

of diastole, respectively. 

2.3.7 Statistical Analysis 

Data are reported as the mean ± standard error of the mean. A post hoc analysis of 

baseline (pre-MI) global stiffness values with an assumption of a 30% effect and sample 

size of eight yielded a statistical power of greater than 80%. The comparative analysis was 

performed with either a one-way or two-way analysis of variance followed by pair-wise 

comparisons using the LSD post hoc study. All statistical analyses were performed with 

SPSS software (version 24.0, SPSS Inc). A p-value less than 0.05 was considered 

statistically significant. 
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2.4 RESULTS 

2.4.1 LV Function and Geometry 

Assessments of LV function and geometry at baseline and at specific post-MI time 

points are shown in Table 2.1.  At 28 days post-MI, LV EF fell by over 40%, LV EDV 

more than doubled, and PCWP increased by 80% relative to baseline values.   

2.4.2 STE-Based Strain Measurements 

Representative plots of mid-myocardial segmental strains (Figure 2.1B) 

demonstrate that STE provided a continuous strain measurement over the cardiac cycle at 

all specified anatomical locations. As depicted by a representative LV circumferential 

section, the MI region, border zone, and remote region are contained within the designated 

myocardial regions at 28 days post-MI, thus supporting the aggregate definition of these 

regions throughout the study (Figure 2.2). Spatial maps of peak segmental strains 

qualitatively show that post-MI changes varied throughout the myocardium and exhibited 

obvious directional dependence (Figure 2.3). At three days post-MI, peak global strain in 

the radial and longitudinal directions decreased by approximately 40%, whereas reduction 

in the circumferential direction was not significant until 28 days post-MI.   

The relative time at which peak strain occurred in the MI region increased by 

approximately 30%-40% with respect to baseline at three days post-MI in all directions, 

with these early changes in the circumferential and longitudinal directions largely 

maintained throughout the study observation period (Figure 2.4). Within the border zone, 

an approximate 30% increase in the relative time to peak strain occurred at all post-MI 

times in the radial direction, but significant increases in the circumferential and 
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longitudinal directions were only recorded at 28 days post-MI. The remote region exhibited 

the least pronounced changes, as the only significant deviations from baseline were found 

in the radial direction at 28 days post-MI.   

2.4.3 Phasic Strain Rates 

Spatial maps of segmental strain rates show that MI impacted both phases of the 

cardiac cycle and that the greatest reductions in strain rates primarily occurred within the 

MI region (Figure 2.5). Reductions of over 50% in global systolic strain rate were observed 

at three days post-MI in the radial and longitudinal directions but were not significant until 

28 days post-MI in the circumferential direction. Global diastolic strain rates were 

relatively preserved post-MI with significant reductions observed only at 14- and 28-days 

post-MI in the longitudinal direction.  

2.4.4 Mean Wall Stresses and Diastolic Myocardial Stiffness 

End-diastolic mean wall stress monotonically increased throughout the 28-day 

observation period in both the circumferential and longitudinal directions with all regional 

values approximately doubling with respect to baseline by 28 days post-MI (Figure 2.6). 

Spatial maps of diastolic myocardial stiffness show that mechanical heterogeneity 

evidently increased post-MI (Figure 2.7A). Global diastolic myocardial stiffness 

underwent a greater than three-fold elevation by 14 days post-MI in the circumferential 

direction and three-fold elevation by three days post-MI in the longitudinal direction. In 

the longitudinal direction, significant diastolic myocardial stiffness elevations occurred in 

the MI region and border zone by three days post-MI and by 14 days post-MI in the remote 

region (Figure 2.7B). All three regions exhibited significantly elevated diastolic 

myocardial stiffness by 14 days post-MI in the circumferential direction. In the MI region, 
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diastolic myocardial stiffness in both directions was maximal at 14 days post-MI. In the 

longitudinal direction, an approximate 40% decrease in stiffness from this maximal value 

occurred between 14- and 28-days post-MI. 

 

2.5 DISCUSSION 

2.5.1 Study Overview 

Changes in LV geometry and function invariably occur following MI in a 

multifactorial process termed post-MI remodeling 52,53. Given the inherent spatial 

nonuniformity of post-MI remodeling, approaches for quantifying LV function in a global 

context can be problematic, and therefore assessment of regional biomechanics may 

provide improved insight into this process. The present study addressed this issue by 

serially examining LV strain and strain rates, indices of myocardial function, in defined 

myocardial regions post-MI. Using a large animal model of post-MI remodeling and STE-

derived indices, the significant findings from this study were two-fold. First, myocardial 

strain and strain rate fell within the MI region at three days post-MI, consistent with a loss 

of viable myocardium and hence contractile capacity. However, while the reduction in 

strain patterns was confined initially within the MI region, this reduction nonuniformly 

extended into the viable LV myocardial regions over one-month post-MI. Second, when 

regional myocardial diastolic stiffness was computed using local stress-strain relationships, 

a biphasic change within the MI region was observed. Specifically, diastolic myocardial 

stiffness initially increased within the MI region but at later post-MI time points remained 

constant in the circumferential direction and significantly fell in the longitudinal direction. 

Despite these regional and directional differences, diastolic myocardial stiffness was 
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significantly elevated throughout the entire myocardium by 28 days post-MI. Thus, serial 

assessment of regional LV function post-MI identified that time- and region-dependent 

changes in myocardial mechanical properties occur over 28 days post-MI, potentially 

providing more sensitive response variables when evaluating disease progression and 

therapeutic interventions. 

2.5.2 Previous Supportive Findings 

STE-based strain measures in our study were comparable to previous large animal 

and clinical studies. Specifically, our baseline global strain values fell within normal ranges 

defined by a meta-analysis of over 2,500 human subjects 75. Additionally, directional 

changes in peak strain observed in the MI region, border zone, and remote region track 

well with those reported in other large animal models 70,71. Our data also support previous 

studies that found elevated MI region stiffness 76–79, including via sonomicrometry 58 and 

three-dimensional magnetic resonance 80. Moreover, results from planar bi-axial 

mechanical testing on freshly excised square samples of remote and infarcted myocardium 

showed that MI region stiffness peaked at one- to two-weeks post-MI, followed by a period 

of decreasing stiffness 81.  

2.5.3 Mechanistic Implications  

The present study identified unique spatial, directional, and temporal variations in 

regional function during post-MI remodeling, which are associated with increased 

mechanical heterogeneity throughout the LV myocardium. We posit that this mechanical 

heterogeneity may be the biophysical stimulus that is translated into cellular and 

extracellular changes within the MI and surrounding region, ultimately contributing to MI 

expansion and eventually LV failure.  For example, during the first 14 days post-MI, the 
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diastolic myocardial stiffness of the MI region and the neighboring border zone became 

increasingly disparate, exemplified by the nearly order-of-magnitude greater MI region 

stiffness in the longitudinal direction. Such abrupt spatial gradients in mechanical stiffness 

that emerge between the MI and viable regions likely induce localized elevations in 

myocardial wall stress and dyskinesis throughout the cardiac cycle, which in turn would 

stimulate further remodeling and the progressive expansion of the MI region 82. The 

reduction in stiffness of the MI region observed at 28 days post-MI relative to 14 days post-

MI may facilitate the continued expansion of the MI region as evidenced by the increase 

in LV EDV over that period. Furthermore, relative values of border zone/MI region 

stiffness at 14- and 28-days post-MI suggest that at the terminal time point, mechanical 

properties throughout the myocardium become more homogenous in both the 

circumferential and longitudinal directions. Such property homogenization may, in turn, 

suggest an approach to mechanical homeostasis by 28 days post-MI – commensurate with 

the plateau in MI region expansion reported in previous studies 57. Conversely, the 

progressive stiffening of the hypertrophied remote region between 14 and 28 days may 

play a pivotal role in driving the elevations in PCWP which may, in turn, facilitate the LV 

dilation. To promote further association of regional mechanical property changes with 

global LV function, we consider as an index of LV chamber stiffness the ratio between 

PCWP and LV EDV. When computed using our data, this index at baseline is valued as 

0.24 ± 0.04 and is found to be consistently reduced by 40% relative to baseline at 14- and 

28-days post-MI. Antithetical changes in diastolic myocardial stiffness of the MI region 

and remote region between 14 and 28 days post-MI may explain the relatively constant 

index of LV chamber stiffness over this post-MI period. The coincidence between the 
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divergence of regional changes in myocardial mechanical properties and the development 

of congestive symptoms suggests that regional stiffness variations may be a key factor, and 

thus therapeutic target, in heart failure progression. 

These biomechanical changes are also seemingly synchronized with deterministic 

biological processes that occur in and around the MI region. These changes include 

fibroblast proliferation and collagen deposition – resulting in the formation of a mature 

scar composed of extracellular matrix by 14 days post-MI 83. This intermediate phase of 

post-MI remodeling also concurs with the highest disparity in fibrillar collagen content 

between the MI region and border zone and dynamic changes in protein expression 

profiles, which directly modulate the reparative response 84. Furthermore, there is evidence 

that many of these regional biophysical changes are modulated by mechanosensitive 

cardiac cells that sense and respond to their local mechanical environment 85. To that end, 

mechanical heterogeneity that emerges post-MI represents a biophysical response variable 

that can explain temporal and spatial variations in key biological processes that occur 

during post-MI remodeling.  

2.5.4 Therapeutic Implications 

While cause and effect relationships are difficult to discern with respect to 

synchronized biological versus biomechanical changes, our data support the regional 

modulation of myocardial mechanical properties as a potential therapeutic target. As 

suggested above, the increase in EDV from 14 to 28 days may be facilitated by a decrease 

in MI region stiffness, suggesting that treatment to maintain or increase MI region stiffness 

may blunt dilation. Similarly, the increase in PCWP from 14 to 28 days may be facilitated 

by an increase in remote region stiffness, suggesting that treatment to decrease remote 
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region stiffness may also blunt dilation. Indeed, previous studies show that biomaterials 

directly injected into the MI region acutely stiffen the myocardium and effectively curtail 

the adverse effects of post-MI remodeling 86,87. Regional biomechanical assessment can be 

used to advance local biomaterial injection strategies, including the optimization of 

biomaterial mechanical properties, total amount, and spatial distribution upon injection, 

such that mechanical heterogeneity is limited in the early stages of post-MI remodeling. 

This general concept is supported by previous results obtained with finite element 

simulations, which predict that biomaterial injections concentrated within the border zone 

(as opposed to uniformly delivered throughout the MI region) attenuate myocardial wall 

stress and promote efficient pump function 88.   

STE has been previously used to discriminate between infarcted and contractile 

myocardium post-MI 89.  Moreover, many studies have shown the utility of quantifying 

global values of STE-derived strain and strain rate with good feasibility, reproducibility, 

and accuracy in clinical and large animal populations 64–72. In accordance with these prior 

studies, we found significant reductions in global myocardial strain and strain rate post-

MI. While global strain has been extensively quantified in the post-MI context, regional 

measurements in our study suggest that the initially antithetical changes in the MI and 

remote regions likely weaken the sensitivity and diagnostic strength of traditional global 

metrics of function. Furthermore, this study demonstrates that STE-derived myocardial 

strain combined with traditional echocardiography and Doppler-derived hemodynamic 

parameters can be used to compute a regional diastolic myocardial stiffness. While an 

analogous technique has been applied to aortic aneurysms 90, we are the first to 
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noninvasively quantify regional diastolic stiffness using STE in the context of post-MI 

remodeling.  

2.5.5 Study Limitations 

Several study limitations must be considered for careful interpretation of the 

obtained results. Firstly, all metrics of LV function are dependent on load. To that end, the 

findings from this study only account for patient-specific variance in hemodynamics 

through the estimation of LV pressure at end-diastole (PCWP) and an assumption of 

negligible LV pressure at the onset of diastole. Additionally, as with all echocardiographic 

techniques, successful quantification of myocardial strain via STE is highly dependent on 

image quality. To translate this technology into a clinical setting, one must consider that 

the ability to capture echocardiographic images of sufficient quality is markedly impaired 

in obese patients or patients with respiratory disorders. However, we expect that the clinical 

utility of the regional tracking of segmental strains will markedly increase as the underlying 

technology becomes more reproducible and reliable.  Furthermore, these findings were for 

an anteroapical MI location in a porcine model and thus may not hold true with different 

MI locations, severity of myocardial ischemia, and/or across species. Finally, 

biomechanical changes were only assessed over 28 days post-MI in our study. Although 

this period has been shown to exhibit significant collagen deposition in a porcine model 91, 

care must be taken when extrapolating these findings into long-term effects given evidence 

that there are changes in LV strain and strain rate that continue through 1-3 months post-

MI 26.  
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2.5.6 Conclusion 

Post-MI remodeling induced progressive changes in LV biomechanics that 

manifest as regional differences in myocardial strain and strain rate over 28 days post-MI. 

For the first time, the utility of STE was extended in a large animal model to quantify 

regional diastolic myocardial stiffness in a serial fashion post-MI. Finally, this study 

identified the biphasic and at times opposing nature of regional changes in myocardial 

diastolic stiffness, which in turn is a likely contributing factor for a “feed forward” 

mechanism for adverse LV post-MI remodeling. Future therapeutic strategies that mitigate 

this significant regional stiffness gradient between the MI and adjacent viable myocardium 

may be a potential target for attenuating post-MI remodeling.     
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2.7 TABLES 

 

Table 2.1: Speckle tracking echocardiography enables quantification of 

myocardial segmental strain. 

 

  Baseline 3 Days 14 Days 28 Days 

     

 EF [%] 69.1 ± 0.8 49.4 ± 2.7* 37.8 ± 2.3*† 37.5 ± 3.4*† 

 LV EDV [mL] 37.2 ± 1.5 59.3 ± 5.1* 77.2 ± 6.5*† 83.6 ± 6.4*† 

 PCWP [mmHg] 7.6 ± 0.6 9.3 ± 0.6* 12.2 ± 0.9*† 13.9 ± 1.1*† 

      
 

* p<0.05 vs. Respective Baseline Value, † p<0.05 vs. Respective 3 days Value, EF: ejection fraction, LV EDV: left ventricular end 
diastolic volume, PCWP: pulmonary capillary wedge pressure (n=8, one-way analysis of variance with post hoc LSD comparisons). 
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2.8 FIGURES 

Figure 2.1: Speckle tracking echocardiography enables quantification of 

myocardial segmental strain. 

(A) Representative echocardiographic images obtained 28 days post-MI (at end 

diastole) divided into six anatomical zones for speckle tracking. (B) Representative 

segmental strain curves of the LV mid-wall over one cardiac cycle at 28 days post-MI 

in the circumferential, radial, and longitudinal directions. 
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Figure 2.2: Definition of aggregate regions based on MI location  

(A) Representative LV circumferential section cut across the central portion of the MI 

and stained with triphenyltetrazolium chloride shows the (B) agreement between 

designated aggregate MI region, border zone, and remote region at 28 days post-MI. 

The jagged line represents the edges of the MI region 
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Figure 2.3: Peak myocardial strain  

Spatial maps of the absolute value of peak myocardial segmental strain in the 

circumferential (top row), radial (middle row), and longitudinal (bottom row) directions 

at baseline and at three, 14, and 28 days post-MI. Inscribed values indicate the peak 

global strain reported as the mean absolute value ± standard error of the mean. * p<0.05 

vs. respective baseline value (n=8, one-way analysis of variance with post hoc LSD 

comparisons). 
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Figure 2.4: Relative time to peak myocardial strain  

The relative time at which peak myocardial strain occurred for each region at baseline 

and at three, 14, and 28 days post-MI, with relative time defined as percent completion 

of one cardiac cycle; * p<0.05 vs. respective baseline value, † p<0.05 vs. respective 

three days value (n=8, one-way analysis of variance with post hoc LSD comparisons). 
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Figure 2.5: Phasic myocardial strain rate  

Spatial maps of the absolute value of the (A) systolic and (B) diastolic myocardial 

segmental strain rates in the circumferential (top rows), radial (middle rows), and 

longitudinal (bottom rows) directions at baseline and at three, 14, and 28 days post-MI. 

Inscribed values indicate the global strain rate reported as the mean absolute value ± 

standard error of the mean. * p<0.05 vs. respective baseline value (n=8, one-way 

analysis of variance with post hoc LSD comparisons). 
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Figure 2.6: Stress-strain relations  

Regional (MI region, border zone, and remote region) myocardial stress-strain relations 

were computed at early- and end-diastole in the circumferential and longitudinal 

directions at baseline and at three, 14, and 28 days post-MI. * p<0.05 vs. respective 

baseline stress or strain value (n=8, one-way analysis of variance with post hoc LSD 

comparisons). 
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Figure 2.7: Diastolic myocardial stiffness  

(A) Spatial maps of diastolic myocardial stiffness in the circumferential and 

longitudinal directions at baseline and at three, 14, and 28 days post-MI. Inscribed 

values indicate the myocardial stiffness reported as the mean value ± standard error of 

the mean. (B) Region-specific change in myocardial stiffness post-MI. * p<0.05 vs. 

respective baseline value, † p<0.05 vs. respective remote region value, ‡ p<0.05 vs. 

respective border zone value, § p<0.05 vs. respective 14-day post-MI value (n=8, two-

way analysis of variance with post hoc LSD comparisons). 
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CHAPTER 3 

CHANGES IN MYOCARDIAL MICROSTRUCTURE AND 

MECHANICS WITH PROGRESSIVE LEFT VENTRICULAR 

PRESSURE OVERLOAD  2 
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3.1 ABSTRACT 

Heart failure with preserved ejection fraction (HFpEF) secondary to left ventricular 

pressure overload (LVPO) is a leading cause of morbidity and mortality. Treatment options 

for HFpEF are limited by our poor understanding of disease phenotype and factors that 

underlie its progression. Our study seeks to assess the dynamic interplay between regional 

changes in myocardial geometry, microstructure, mechanical behavior, and mechanical 

properties that occur in response to progressive LVPO in a large animal model. LVPO was 

induced in mature pigs by progressive inflation of an implanted ascending aortic cuff for 

up to five weeks. Serial echocardiography was used to quantify left ventricle (LV) chamber 

stiffness and left atrial (LA) area, as well as regional myocardial strain and stiffness. Light 

microscopy and second harmonic imaging (SHG) were used to evaluate myocardial 

collagen content and microstructure. LVPO induced minimal perturbations in ejection 

fraction and peak systolic strains, but significant elevations in LV chamber stiffness, LA 

area, and regional myocardial stiffness. Analyses of myocardial collagen content and 

microstructure suggested that increased myocardial stiffness is promoted by not only an 

increase in collagen mass, but also a realignment of the collagen fibers and a reduction of 

their undulation. Myocardial microstructural and mechanical data were integrated to 

develop a novel index of local biomechanical adaptation to LVPO. Regression modeling 

suggest that this index, when obtained shortly after the onset of LVPO, is predictive of 

progressive increases in LV chamber stiffness. Our findings support the use of serial 

biomechanical analysis b to track the progression of HFpEF and present a translational 

method to stratify patient risk and assess the efficacy of pharmacological and therapeutic 

approaches.  
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3.2 INTRODUCTION 

The rate and incidence of heart failure (HF) continues to escalate and recent 

statistics have identified this disease as the leading cause of morbidity and mortality – 

eclipsing all other chronic diseases.30 While significant progress has been achieved in 

therapeutic retardation or elimination of other major illnesses such as cancer, these 

advancements have not been as forthcoming for HF. One contributory factor for this is that, 

unlike cancer which is classified by morphology, cell type, and molecular/genetic profiles, 

HF has been historically considered as a single entity fundamentally defined by 

symptomatology. However, it is also recognized that HF arises from distinctly different 

etiologies, which, in turn, have demonstrated distinctly different therapeutic responses and 

clinical outcomes.31,32  

While the precise categorization of HF is continuously evolving, a generalized 

dichotomy can be made between patients presenting with or without significant left 

ventricular (LV) pump dysfunction. Specifically, if LV ejection fraction (EF) is below 

45%, this is defined as HF with reduced EF (HFrEF), whereas if HF symptoms are present 

and EF is above this value, then it is defined as HF with a preserved EF (HFpEF). Using 

this HF classification scheme, it has been estimated that patients with these HF phenotypes 

are equally distributed.31 Randomized clinical trials using combinatorial pharmacology or 

device-driven therapies have demonstrated significant improvement in HF progression and 

clinical outcomes in patients with HFrEF, but not in patients with HFpEF.92–99 In addition, 

while the functional progression of HFrEF can be monitored by serial assessment of 

changes in EF, the natural history of HFpEF is not as easily tracked or well understood.51,100 
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As a result, advancements in the prognosis and strategic interventions for HFpEF have 

been met with challenges.  

One rate limiting step in the research progress for HFpEF is a paucity of 

translationally relevant animal models that recapitulate key features of this HF 

phenotype.101,102 Specifically, HFpEF can arise from progressive and prolonged LV 

pressure overload (LVPO) rather than from an acute pathological stimulus such as 

myocardial ischemia, which progresses to HFrEF.103–106 In addition, a key component in 

the progression of HFpEF is the development of LV diastolic dysfunction, which requires 

sensitive measures of LV diastole and can be difficult to assess in a serial manner.107,108 

We have previously established a porcine model of progressive LVPO, which resulted in 

significant LV hypertrophy with stable EF, but with evidence for impaired diastolic 

function, consistent with the clinical phenotype of HFpEF.109  

The overall goal of this study was to utilize this relevant pre-clinical model to parse 

out the relationship between the LV geometry, collagen microstructure, mechanical 

behavior, and mechanical properties in development of HFpEF. The central hypothesis of 

this study was that LV remodeling in response to LVPO is characterized by an increase in 

collagen mass and a change in the collagen microstructure. We posit that these changes 

will be the driving factor behind progressive changes in both LV chamber stiffness and 

myocardial mechanical properties. To that end, in the present study we employ a 

combinatorial approach of non-invasive imaging techniques along with an advanced 

optical analysis of the collagen microstructure to improve upon the current understanding 

of the mechanisms which give rise to the progression of HFpEF. 
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3.3 METHODS 

The present study induced progressive LVPO in pigs for up to a 5 week period, 

over which regional myocardial strain and stiffness were quantified using speckle tracking 

echocardiography and, at the terminal time point, myocardial collagen content and 

microstructure using quantitative histomorphometry and second harmonic generation 

imaging.7,57,61,110–113 These functional and serial results were then examined with a focus 

upon identifying factors that would contribute to and potentially predict changes in LV 

chamber stiffness, a hallmark of HFpEF progression.47,50,109,114–119 

3.3.1 Aortic Cuff Placement 

Yorkshire pigs (n=15, 15.8±0.6 kg, Hambone Farms, Orangeburg, SC) were 

anesthetized with isoflurane (3%/1.5L/min) and nitrous oxide (0.5L/min). Through a left 

thoracotomy, the pericardium was incised and a 12 mm inflatable silastic vascular cuff 

(Access Technologies, Skokie, IL) was secured around the supracoronary ascending aorta 

without inducing aortic constriction. A uniform length of silastic tubing was connected to 

a subcutaneous access port (Access Technologies, Skokie, IL) for subsequent serial 

hydraulic mediated expansion of the aortic cuff. The animals were allowed to recover for 

one week. Twelve age-matched referent control pigs were also used for comparative 

analyses. A prospective power analysis assuming a doubling of key response variables 

relative to the subject-matched baseline value and a standard error of measurement of 40% 

yielded a minimum study power of 0.80 for all experimental groups. All animals were 

treated and cared for in accordance with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals (Eighth Edition. Washington, DC: 2011) and all 
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experimental protocols were approved by Institutional Animal Care and Use Committees 

at the University of South Carolina. 

3.3.2 Progressive Induction of LVPO 

Following the one-week recovery period, the cuff was inflated through the access 

port (via 0.45 mL glycerol) to achieve a specific target gradient of 75 mmHg across the 

cuff and induce LVPO. At weekly intervals thereafter, the cuff was further inflated 

(0.25 mL increments) to cause a stepwise increase in the pressure gradient (25 mmHg 

increase/inflation). At either four (n=7) or five weeks (n=7) post-PO, the animals were 

again anesthetized (5% isoflurane) and the LV was harvested. 

3.3.3 Standard Echocardiography 

Standard echocardiography was performed weekly throughout the study (GE Vivid 

E9 with XDclear Ultrasound System: M5S (1.5-4.6 MHz) transducer probe). Left 

ventricular and left atrial dimensions and function were assessed by two-dimensional and 

M-mode echocardiographic studies. The transthoracic images were acquired from a right 

parasternal approach as well as an abdominal/sub xyphoid approach. The LV was imaged 

in the short- and long-axes. The short-axis views were taken at the level of the papillary 

muscles. End-diastolic volume (EDV), end-systolic volume (ESV), and EF were calculated 

using the biplane method of disks. Left atrial (LA) area was determined from the 

anteroposterior dimensions acquired from the parasternal long-axis view. Additionally, 

wall thickness and LV internal dimension were collected at early- and end-diastole for each 

of the six conventional echocardiogram segments of the LV in the parasternal long-axis 

and papillary level short-axis. Finally, following the convention established by Devereux 

and colleagues, LV mass was estimated from M-mode measurements.4 Echocardiographic 
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studies under identical sedation/acquisition conditions were performed at weekly intervals 

until the terminal timepoint. 

3.3.4 Definition of Normal Range for Left Ventricular mass 

LV mass measurements (computed as described above) were collected from a 

cohort of 100 male Yorkshire pigs (body weights ranging from 13.4 kg to 33.1 kg) that 

were part of this laboratory’s prior studies completed between 2012-2017. A normogram 

for LV mass as a function of body weight was generated by fitting a linear regression 

through the resultant data set with a 95% confidence interval. This normogram provides a 

basis to assess pressure-induced elevations in LV mass with due account of normal growth. 

3.3.5 Terminal Evaluation of Global and Regional Left Ventricular Function 

In a subset of referent control (n=5) and banded (n=5) pigs, LV pressure and 

dimensions were obtained. Briefly, the pigs were anesthetized with fentanyl (50 µg) and 

propofol (100 mg), and a cardiac catheter introducer with a side-arm (9F, Medtronic, 

Minneapolis, MN) connected to a pressure transducer was placed in the right carotid artery 

and advanced to the ascending aorta. After which, a multi-lumened thermodilution catheter 

(7.5F, Baxter Healthcare Corp., Irvine, CA) was advanced through the right external 

jugular vein and positioned in the pulmonary artery. Pulmonary capillary wedge pressure, 

a surrogate for end-diastolic pressure (PED), was measured using conventional methods.120 

Afterwards, a microtipped transducer (7.5F, Millar Instruments Inc., Houston, TX) was 

placed in the LV through a small apical stab wound. Pressure data was recorded at a 

sampling frequency of 100 Hz and digitized (Ponemah, Harvard Bioscience Inc., Holliston, 

MA). Following the placement of the instrumentation, an ultrasound transducer (GE Vivid 

E9 with XDclear Ultrasound System: M5S (1.5-4.6 MHz) transducer probe) was positioned 
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for transthoracic imaging of the LV short-axis and measurement of continuous LV volume 

and wall thickness.121 Steady-state LV function was determined with simultaneous 

acquisition of pressure and echocardiographic data with the ventilator temporarily 

suspended in order to prevent respiratory artifact. Following steady-state measurements, 

LV preload was altered with sequential occlusion and release of the inferior vena cava with 

vascular ligature. Again, simultaneous pressure and echocardiographic data were collected 

during occlusion and release. 

After data acquisition was complete, the digitized pressure and LV dimension data 

were aligned using the R-wave of the simultaneously recorded ECG from each modality. 

The aligned pressure and dimension data for the steady-state and caval occlusion cardiac 

cycles were used to determine the regional myocardial stiffness constant and LV chamber 

stiffness, respectively, using the methods derived by Mirsky and Pasipoularides.21,22 

3.3.6 Non-Invasive Estimation of End-Diastolic Pressure and Chamber Stiffness 

While direct measurements of LV pressure and chamber stiffness via cardiac 

catheterization have been accepted as the gold standard, non-invasive estimates of these 

response variables were necessary in order to track the progression of disease and LV 

remodeling. Accordingly, obtained measurements of pulmonary capillary wedge pressure 

and temporally-matched LA area measurements in a subset of referent control (n=5) and 

banded (n=8) animals were used to identify an expression for non-invasive estimation of 

end-diastolic pressure, specifically 𝑃𝐸𝐷 = 1.88𝑒0.16(𝐿𝐴 𝑎𝑟𝑒𝑎) (R2=0.91). After applying this 

regression-based non-invasive estimation of 𝑃𝐸𝐷 to the entire study cohort, a non-invasive 

surrogate of LV chamber stiffness (𝐾𝐶
∗) was computed as the ratio between 𝑃𝐸𝐷 and 

EDV.122 
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3.3.7 Speckle Tracking Echocardiography 

Three consecutive digital loops of the two-dimensional echocardiography for the 

long-axis and short-axis were stored on a hard disk and transferred to a workstation 

(EchoPac, Vingmed, General Electric) for post-processing. For each echocardiographic 

digital loop, a region of interest (ROI) was defined at the onset of the R-wave by manually 

tracing the endocardial and epicardial borders. The ROI was then discretized with a spatial 

mesh of acoustic clusters to be tracked on a frame-to-frame basis throughout the cardiac 

cycle (R-R interval).7 The end of systole was defined as the point at which the LV cross-

sectional area was at a minimum. After the semi-automated grouping of acoustic clusters 

in accordance with six predetermined anatomical locations, regional tracking quality was 

assessed, and the ROI was manually adjusted by the operator to improve tracking quality 

where necessary. Successful tracking of the ROI allows for the definition of segmental 

lengths, which are computed at end diastole (L0) and continuously throughout the cardiac 

cycle (L). Local segmental strains (ε) and strain rates (γ) are then computed as: 

𝜀 =
𝐿−𝐿0

𝐿0
=

∆𝐿

𝐿0
     (3.1) 

𝛾 =
(∆𝐿/∆𝑡)

𝐿0
     (3.2) 

where Δt is the relative time in the cardiac cycle. Peak strain and diastolic strain rate were 

quantified in the two normal directions, circumferential (short-axis) and longitudinal (long-

axis), at the endocardial, mid-wall, and epicardial surfaces. Global strain values were 

calculated from the total length of all six segments. Obtained segmental strain and strain 

rate data were assessed for intra-observer variance by calculating the intra-class correlation 

coefficient for a single operator under the assumption that systematic differences are 
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relevant. The intra-class correlation coefficient for all measures of strain and strain rate 

ranged from 0.94 to 0.99. 

3.3.8 Mean Wall Stresses 

We modified a thick-walled ellipsoidal model proposed by Janz to compute mean 

wall stresses.24 The mean circumferential wall stress (𝜎𝐶) was computed as:  

𝜎𝐶 =
𝑃𝑟2

2𝑡(𝑟+
𝑡

2
)
 (3.3) 

where (r) is the inner radius, (t) is the wall thickness, and (P) is the LV pressure. For the 

purposes of this study, (P) was assumed to equal zero at the onset on diastole and the PCWP 

at end-diastole.  

The mean longitudinal wall stress (𝜎𝐿)  was computed as:  

𝜎𝐿 =
𝑃𝑟2

2𝑡(𝑠𝑖𝑛𝜃)(𝑟+
𝑡(𝑠𝑖𝑛𝜃)

2
)
  (3.4) 

where (Φ) is the angle between the normal vector from the endocardium at the ROI and 

the axis of revolution in the truncated ellipsoid model. 

3.3.9 Regional Diastolic Myocardial Stiffness 

Obtained values for mean wall stresses and segmental strains at the onset of diastole 

and end-diastole enabled calculation of regional diastolic myocardial stiffness in both the 

circumferential and longitudinal directions. The slope of the line between these two points 

in the stress-strain plane, developed in either the circumferential or longitudinal direction 

and referenced to the defined anatomical locations, was used to compute the regional 

diastolic myocardial stiffness (KMR) as: 

𝜅𝑀𝑅 =
𝜎𝐸𝐷

|𝜀𝐷0|
     (3.5) 
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where 𝜎𝐸𝐷 and 𝜀𝐷0 are the end diastolic mean wall stress and segmental strain at the onset 

of diastole, respectively. 

3.3.10 Second-Harmonic Generation Imaging 

Upon terminal heart harvest, a 1-inch thick bisection of the left ventricle was fixed 

in 10% formalin – preserving the native orientation and configuration of the collagen fibers 

– and refrigerated for histological evaluation. The LV lateral free-wall myocardium was 

later sectioned into thin, 200 µm sections using a vibratome and placed on the motorized 

stage of a multiphoton microscope (Leica TCS SP8 MP, Leica Microsystems). Short-

pulsed infrared lasers were used to create non-linear polarization effects in the form of 

second-harmonic generation (SHG) signals at a magnification of 25x. Images were 

acquired for a fixed sample area of 0.2 mm2 at depth intervals of 1.5 µm. 

3.3.11 Automated Tracing of Individual Collagen Fibers 

Two-dimensional images acquired from the multiphoton microscope were 

converted to 8-bit greyscale and virtually stacked in three-dimensions using the Amira 

software package.123 For the fully-automated tracing of individual collagen fibers, we 

modified the previously described techniques developed for electron tomography,124,125 

which have been packaged into the XTracing filament detection extension available for 

Amira. In brief, this tracing algorithm consists of two main steps: template matching and a 

line search approach. A correlation field is generated by computing the cross-correlation 

of the voxels in the three-dimensional stack with a cylindrical template. This cylindrical 

template mimics a short collagen fiber segment with a mask radius of 5 µm and a length of 

20 µm. The correlation was computed for each voxel on a NVIDIA Quadro M2000 

graphics processing unit. The line search approach was then used to iteratively identify the 
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voxels on the centerline of each collagen fiber. From an initial seed point, a search cone 

spanning 20 µm and 45 degrees was used to identify candidate points that were scored on 

the basis of continuity, curvature, and deviations from the orientation field. The line search 

stops when the search cone fails to identify candidate points with scores above the 

minimum threshold. 

3.3.12 Characterization of the Collagen Structure 

Each collagen fiber was evaluated with respect to orientation and undulation. Two 

angles were used to define the fiber orientation. The azimuthal angle (φ) refers to angle 

from the positive radial axis of the fiber’s projection on the longitudinal-radial plane, where 

φ=0º is then the radial direction. The elevation angle (ϑ) refers to the angle from the positive 

circumferential axis of the fiber’s projection on the circumferential-longitudinal plane, 

where ϑ=0º and ϑ=90º correspond with the circumferential and longitudinal directions, 

respectively. Fiber undulation (𝑢) is defined as the ratio between the path length (𝑙𝑝) and 

the end-to-end length (𝑙𝑒) of a given fiber.  

𝑢 =  
𝑙𝑝

𝑙𝑒
  (3.6) 

3.3.13 Collagen Content by Light Microscopy 

LV septal and lateral sections were stained with picrosirius red (PSR) and viewed 

with polarized light at a magnification of 40x. Five fields were chosen at random from the 

mid-myocardium. Fields with large blood vessels were excluded from the analysis. 

Collagen volume fraction (CVF) was calculated as the area stained by PSR divided by the 

total area of interest using ImageJ software.126 
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3.3.14 Statistical Analysis 

Data are reported as the mean ± standard error of the mean. Comparative analyses 

were performed using a one-way analysis of variance followed by pair-wise comparisons 

using the least significant difference post hoc study. For the assessment of the relative 

change from baseline, a t-test was performed whereby significance of the transformed data 

were determined using a null hypothesis of a zero-mean value. For SHG collagen fiber 

characterization, at each timepoint, all values of φ, ϑ, and 𝑢 were pooled and binned into 

100 equally sized bins. The resulting frequency distributions were subjected to a Kruskal-

Wallis one-way analysis of variance for non-parametric comparisons across different 

timepoints. A multiple linear regression model with inputs derived at one-week post-PO 

was used to predict the relative change in 𝐾𝐶
∗ at two-weeks, three-weeks, four-weeks, and 

five-weeks post-PO, and the p-value and t-statistic were calculated for each of the input 

variables. A Spearman’s rank correlation analysis was used to interrelate experimental 

response variables at four- and five-weeks post-PO. All statistical analyses were performed 

with SPSS software (version 24.0, SPSS Inc) or MATLAB (version R2018a, The 

MathWorks Inc). A p-value of less than 0.05 was considered statistically significant. 

 

3.4 RESULTS 

3.4.1 Left Ventricular Geometry and Systolic Function 

The progressive hydraulic inflation of the aortic cuff resulted in significant 

hypertrophy of the LV as compared to an age-matched referent control LV as a result of 

the narrowing of the aortic lumen (Figure 3.1A). This hypertrophic response, growth that 
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superseded that which can be expected due to normal growth, occurred in a time-dependent 

fashion over five weeks (Figure 3.1B). In contrast, the ratio of LV EDV to body weight 

was preserved and systolic function, assessed by LV ejection fraction, was modestly 

increased relative to baseline at both four- and five-weeks post-PO. Significant increases 

in the LV mass/volume ratio and LA area were observed. The effects of PO on LV function 

and geometry are summarized in Figure 3.2. 

3.4.2 Left Ventricular Diastolic Function 

Following established convention, chamber stiffness was determined from 

pressure-volume relations at the four- or five-week post-PO terminal timepoint and age-

matched referent control pigs (Figure 3.3A). Significant increases in chamber stiffness 

were observed in the banded animals (Figure 3.3B). Similarly, increases in the previously-

defined non-invasive surrogate for chamber stiffness (𝐾𝐶
∗) were observed in the banded 

animals relative to baseline observations by one-week post-PO and progressive increases 

through five-weeks post-PO. Post-processing via Pearson correlation analysis yielded 

significant correlation between these two measurements of chamber stiffness (ρ=0.75, 

p<0.05). As such, for the duration of the results and discussion, we will use 𝐾𝐶
∗ as the 

predominant measure of LV chamber stiffness because it can be measured in a serial 

manner. 

3.4.3 Left Ventricular Collagen Content and Organization 

Photomicrographs of picrosirius red-stained slides enabled quantification of 

myocardial collagen content (Figure 3.4). CVF was indistinguishable at four- versus five-

weeks post-PO, but both were more than doubled compared to the referent control value. 

The increase in collagen content was coupled with significant changes in collagen fiber 



www.manaraa.com

  

61 

 

microstructure (Figure 3.5). In all three layers of the LV, observed fiber undulation 

distributions indicated a significantly higher coincidence of less wavy fibers at five-weeks 

post-PO compared to referent control (Figure 3.5B). In terms of ECM organization, 

collagen fiber angle distributions on the circumferential-longitudinal plane in the 

epicardium and endocardium were significantly shifted towards the circumferential axis by 

five weeks and four weeks post-PO, respectively (Figure 3.5C). Collagen fiber angle 

distributions on the radial-longitudinal plane were mostly preserved during the five weeks 

of this study (Figure 3.5D). 

3.4.4 Assessment of Biomechanical Behavior and Properties 

STE was used to serially track LVPO-induced changes in regional peak strain, 

diastolic strain rate, and diastolic myocardial stiffness (Figure 3.6). Peak strain, taken as 

an index of regional systolic function, is generally preserved in the longitudinal direction 

and moderately elevated in the circumferential direction by one-week post-PO. Regional 

diastolic function, assessed via diastolic strain rate, was found to be impaired in the 

longitudinal direction with a reduction relative to baseline values observed in the 

endocardium and mid-myocardium by three-weeks or four-weeks post-PO, respectively. 

In contrast, circumferential diastolic strain rate was mostly preserved. LVPO was found to 

have a significant effect on diastolic myocardial stiffness in both the circumferential and 

longitudinal directions. Regional measurements of diastolic myocardial stiffness were 

validated against the measurements obtained from the invasive catheterization 

measurements defined above and a significant correlation between the two was observed 

(ρ=0.70, p<0.05). The global diastolic myocardial stiffness, taken as the average stiffness 

computed among all defined regions, significantly increased by four-weeks post-PO in the 
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circumferential direction and by two-weeks post-PO in the longitudinal direction, with 

progressive increases subsequently occurring in both directions. 

3.4.5 Correlation Between Regional Composition and Biomechanical Behavior and 

Properties 

A correlation matrix was developed to relate the relative change in biomechanical 

response metrics and geometrical, compositional, and microstructural features of the 

myocardium at the terminal study timepoints (Figure 3.7). Surprisingly, subject-specific 

changes in wall thickness and collagen content did not significantly correlate with the 

changes in biomechanical response metrics, while ECM microstructure did so in an 

intuitive manner. Specifically, a reduction in fiber undulation (𝑢→1) was correlated with 

increased myocardial stiffness in all three layers of the LV. Furthermore, an inverse 

correlation was observed between the elevation angle and myocardial stiffness – linking a 

preferential fiber orientation towards the circumferential axis (ϑ→0°) to higher 

circumferential myocardial stiffness. 

3.4.6 Predicting Changes in LV Chamber Stiffness 

To develop an index of biomechanical adaptation of the myocardium to LVPO, we 

examined the subject-specific relationship between regional changes in diastolic 

myocardial stiffness and wall thickness. Specifically, we computed the slope of a linear 

regression in the circumferential stiffness-thickness plane (𝜕𝐾𝑀𝑅/𝜕𝐻) developed with 

measurements from the six defined myocardial regions at one-week post-PO (Figure 

3.8A). The observed inverse relationship, when computed for an individual subject, is 

posited as an index of adaptation in the sense that the more negative the slope, the more 

the myocardium has mechanically-compensated for increased wall thickness such that the 
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concomitant increase in 𝐾𝐶
∗ is less severe. This index of adaptivity was combined with the 

measurement of the current chamber stiffness (𝐾𝐶,1−𝑤𝑒𝑒𝑘
∗ ) in a multiple linear regression 

model of the form: 

𝐾𝐶,𝑝𝑟𝑒𝑑.
∗ = 𝑎

𝜕𝐾𝑀𝑅

𝜕𝐻
+ 𝑏(𝐾𝐶,1−𝑤𝑒𝑒𝑘

∗ ) + 𝑐(𝑇) + 𝑑, (3.7) 

where 𝑎, 𝑏, 𝑐, and 𝑑 were fitting parameters and 𝑇 was the time (in days) of the 

echocardiographic analysis after the initial placement of the aortic cuff. A post-hoc Pearson 

correlation analysis of the predicted change in chamber stiffness versus the experimentally 

measured result demonstrates a strong correlation between the two numbers (Figure 3.8B) 

(ρ=0.75, R2=0.57, p<0.05). After the determination of the t-statistic for each of the four 

fitting coefficients, all were deemed to be statistically significant with a significance level 

of 5% (0.05). 

 

3.5 DISCUSSION 

3.5.1 Study Overview 

The clinical syndrome of HFpEF burdens over three million patients in the United 

States alone and carries a five-year mortality rate of approximately 50%.30,31,127 While there 

are viable pharmacological and therapeutic options available for those suffering from 

HFrEF, HFpEF treatments are limited by our poor understanding of disease phenotype, 

etiology, and progression.51,92–100 The present study seeks to address this knowledge gap 

with a series of regional measurements of myocardial mechanics and microstructure in a 

porcine model of LVPO with retained systolic function. Using a combination of non-

invasive serial measurements and ex-vivo analysis, the significant and noteworthy findings 
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from this study were three-fold. First, our results show that in addition to the expected 

increase in LV 𝐾𝐶
∗, progressive changes in regional diastolic myocardial stiffness occur 

over five-weeks post-PO and provide a promising basis for improved clinical phenotyping 

of HFpEF. Second, elevated myocardial stiffness following LVPO is modulated by not 

only increased collagen content, but also changes in collagen fiber alignment and 

undulation. Third, through pig-specific analysis of regional changes in myocardial stiffness 

and wall thickness shortly following the onset of LVPO, we have identified a novel method 

to predict the extent of adverse LV chamber stiffening observed at later times post-PO. 

Thus, using a pre-clinical model we have shown the viability of serial biomechanical 

analysis as a basis to track the progression of HFpEF and present a translational method to 

stratify patient risk and assess the efficacy of pharmacological and therapeutic approaches. 

3.5.2 Serial Tracking of Myocardial Biomechanics and Mechanical Properties 

While the progression of HFpEF can be difficult to assess and track in a clinical 

setting, this animal model resulted in LV hypertrophy and hallmark characteristics of 

HFpEF in accord with previous studies.109 From a biomechanical perspective, hypertrophy 

is the primary adaptive response of the myocardium to LVPO that mitigates the 

concomitant increase in wall stress.128,129 Partially as a result of hypertrophy, progressive 

and significant elevations in diastolic 𝐾𝐶
∗ also occur over the time course of this study – 

again falling in line with a multitude of prior studies.47,109,114,115,130,131 However, a 

comparison of late study time points (four- versus five-weeks post-PO) suggests that 

structural stiffness elevations are not simply governed by the addition of myocardial mass, 

but also the local mechanical stiffening of the myocardium itself.  While the co-dependence 

of aberrant LV structural mechanics on both myocardial geometry and mechanical 
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properties is expected in all modes of HF, our results provide novel directional and regional 

detail on PO-induced elevations in diastolic myocardial stiffness (KMR) and, importantly, 

inform temporal relation to elevations in 𝐾𝐶
∗.18,109,130,132,133  Despite the substantial changes 

in geometry, KMR, and 𝐾𝐶
∗, baseline peak strain and diastolic strain rate were largely 

retained. While there are a number of recent clinical studies which suggest that HFpEF is 

marked by a reduction of global longitudinal strain, this study (along with others) shows 

modest, if any, early changes in regional or global strain and diastolic strain rate. This 

finding suggests that global longitudinal strain values may be used to sub-classify HFpEF 

in the early stages of disease progession.111,134–137   

3.5.3 Microstructural changes with LVPO 

A consensus has emerged that the extracellular matrix (ECM) is extensively altered 

in the case of HFpEF secondary to LVPO.138 These changes, primarily excessive ECM 

deposition by fibroblasts and changes in the relative balance between matrix 

metalloproteinases (MMPs) and the tissue inhibitors of the MMPs, are not readily 

reversible and contribute to impaired diastolic function.138–142 This excessive ECM 

deposition, most notably increased collagen content, has been associated with the 

progressive stiffening of the LV and myocardium.143–146 While we too observe LVPO-

induced increases in CVF, correlation analyses suggest that changes in collagen fiber 

microstructure further modulate myocardial stiffness at later post-PO time points. As first 

established in the context of vascular mechanics, the inherent undulation of tissue-

embedded collagen fibers implies a gradual contribution to load-bearing under increasing 

tension.147 Likewise in the myocardium, a collagen fiber with relatively less undulation  

will be recruited to load-bearing at relatively lower loads (pressure), and thus lead to 
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increased KMR. Our regional analysis indeed showed correlation between the reductions in 

fiber undulation and increases in KMR. We posit that in the cycle of degradation and 

synthesis of collagen that occurs secondary to LVPO, the newly deposited collagen is 

embedded in the ECM under a higher degree of tension due to the elevated intraventricular 

pressure, which in turn reduces mean undulation and increases passive stiffness. We also 

show significant collagen fiber realignment concordant with disease progression. Much 

like previously reported findings of the infarcted myocardium, we observe that LVPO-

induced hypertrophy is associated with an increased circumferential alignment of collagen 

fibers.34 Taken together, these findings suggest that changes in fiber microstructure and 

alignment contribute to the recorded elevations in both circumferential and longitudinal 

KMR. 

3.5.4 Early Stratification of Subject-Specific Risk 

It is accepted that soft tissue growth and remodeling are adaptive responses to cope 

with sustained changes in the local mechanical environment (i.e. stresses and strains) of 

mechanosensitive cells.148–151 In 1995, Fung proposed a kinematic mass-stress relationship 

with the fundamental idea that every biological tissue has mechanisms by which to 

maintain a certain homeostatic stress state.152 Thus, elevations in stress (possibly due to 

increased loading) would result in a compensatory increase in mass, while reductions in 

stress would result in the opposite – effectively restoring the tissue to its native homeostatic 

stress state. While modulation of growth facilitates the maintenance of the local 

homeostatic stress state, we posit that in an optimally adaptive tissue, local changes in mass 

must also be coupled with proportionally opposing changes in local stiffness so as to 

maintain structural compliance. As it applies to the present study, at one-week post-PO, we 
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observed that local wall thickening coincides with relatively less local stiffening (or even 

reductions in local stiffness) throughout the myocardium. Based on this notion of optimal 

adaptation, we take the degree to which an inverse thickening-stiffening relation is manifest 

to reflect the overall LV adaptive capacity of the individual subject. We defined a related 

index of biomechanical adaptation and showed that it, along with 𝐾𝐶
∗ also obtained at this 

early time point, can be used to predict subsequent elevations in 𝐾𝐶
∗ (Figure 3.7). Though 

it does little to address the underlying mechanisms, the proposed model may prove to be a 

clinically-relevant means to predict an individual patient’s progression to HFpEF and 

therefore may influence clinical decision making in regard to disease prevention or 

management.50,116–119 Furthermore, these findings give rise to a potential target for future 

studies as we seek to understand the epidemiological mechanisms which drive the varying 

degrees of biomechanical adaptive capacity on a subject-to-subject basis. 

3.5.5 Study Limitations and Summary 

For the first time, a serial characterization of myocardial mechanics and the 

organization/configuration of collagen within the ECM has been performed in a large 

animal model of LVPO. Furthermore, we present a novel mechanics-based method to 

predict the subject-specific severity of LV chamber stiffening, a central component of the 

HFpEF phenotype. However, several study limitations should be considered upon 

evaluation of our conclusions. Firstly, although the porcine model employed in our study 

enabled unique measurements with potential to advance the phenotyping of HFpEF, this 

animal model does not emulate any of the co-morbidities typically observed in patients 

with HFpEF (i.e. metabolic or renal dysfunction). Additionally, while the indices of 

diastolic dysfunction (i.e. LA area, LV chamber stiffness) suggest that these animals are 
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on a trajectory to HFpEF, the study was completed prior to a robust symptomatic 

development of HFpEF. Finally, while this study provides a promising method to predict 

HFpEF progression based on early observations of LV biomechanics, we did not explore 

the extent to which our results/predictions would vary in the context of a therapeutic 

intervention. Future studies in a clinical setting would be needed to further validate our 

findings and importantly evaluate the translational potential of using early changes in LV 

biomechanics following the onset of LVPO to predict those patients at greatest risk for the 

development and progression of HFpEF. 
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 3.7 FIGURES

Figure 3.1: Pressure overload-induced hypertrophy of the LV 

(A) Representative transthoracic echocardiographic views of the LV short-axis at the 

level of the papillary muscle along with preserved bisections of the intact ventricles and 

ascending aorta for both study groups. A clear and obvious thickening of the LV 

occurred as a result of LVPO. The aortic cuff significantly reduced the cross-sectional 

area of the aortic lumen. (B) LV mass obtained at baseline and over five-weeks post-

PO superimposed on a normogram of LV mass relative to body weight. The observed 

increase in LV mass indicates a pressure-induced hypertrophic response. (BL – three-

weeks post-PO: n=15; four-weeks post-PO: n=14; five-weeks post-PO: n=7) 
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Figure 3.2: Echocardiographic indices of the progression to HFpEF. 

(A) Baseline values of LV end-diastolic volume/body weight ratio, (B) LV ejection 

fraction, (C) LV mass/volume ratio were largely maintained over the study period, and 

(D) LA Area progressively increased over five-weeks post-PO. * p<0.05 vs. baseline 

value, + p<0.05 vs. one-week value, # p<0.05 vs. two-weeks value, ‡ p<0.05 vs. three-

weeks value. (BL – three-weeks post-PO: n=15; four-weeks post-PO: n=14; five-weeks 

post-PO: n=7) 
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Figure 3.3: Evaluation of left ventricular chamber stiffness. 

(A) Gold-standard techniques were used to derive measurements of left ventricular 

chamber stiffness in a subset of referent control (n=5) and pigs four- or five-weeks post-

PO (n=5) from pressure-volume relationships. A significant reduction in LV chamber 

compliance was observed in the animals four- to five-weeks post-PO – as evidenced by 

the included representative examples. (B) A non-invasive surrogate of LV chamber 

stiffness (𝐾𝐶
∗) was generated and validated against the gold-standard measurements of 

chamber stiffness. While differing in magnitude, a correlative response was observed 

between the two measurements. (C) This non-invasive measurement of chamber 

stiffness allows for the serial assessment of diastolic function and demonstrates 

progressive stiffening of the LV chamber through the five weeks of the study. * p<0.05 

vs. baseline value, + p<0.05 vs. one-week value, # p<0.05 vs. two-weeks value, ‡ p<0.05 

vs. three-weeks value, § p<0.05 vs. four-weeks value. (BL – three-weeks post-PO: n=15; 

four-weeks post-PO: n=14; five-weeks post-PO: n=7) 
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Figure 3.4: Quantification of collagen content. 

(A) Transmural sections of the LV mid-myocardium were stained with picrosirius red 

and imaged at 40x magnification. (B) Collagen volume fraction (CVF) was computed 

for samples corresponding to referent control (n=7), four-weeks post-PO (n=6), and 

five-weeks post-PO (n=7). * p<0.05 vs. referent control value. 

0

2

4

6

8

10

12

14

16

Referent

Control

4 Weeks

Post-PO

5 Weeks

Post-PO

C
o
ll
a
g

e
n

 V
o
lu

m
e
 F

ra
c
ti
o
n

 (
%

)

*
*

(A) (B)

R
e

fe
re

n
t 

C
o

n
tr

o
l

4
 W

e
e

k
s
 P

o
s
t-

P
O

5
 W

e
e

k
s
 P

o
s
t-

P
O

50 µm

50 µm

50 µm



www.manaraa.com

 

 

 

73 

 

Figure 3.5: Characterization of collagen fiber structure and orientations. 

(A) Three-dimensional stacks of two-dimensional images acquired from second 

harmonic generation enabled reconstruction of collagen fibers and subsequent 

representation as vectors in a Cartesian coordinate system for samples corresponding to 

referent control (n=5), four-weeks post-PO (n=6), and five-weeks post-PO (n=7). (B) 

Regional fiber undulation (𝑢) distributions were computed for the epicardium (EPI), 

mid-myocardium (MYO), and endocardium (ENDO) based on reconstructed fiber 

geometries. Two fiber-specific angles were computed to quantify fiber orientation. (C) 

The elevation angle, ϑ, was computed from the circumferential-longitudinal plane. An 

angle of ϑ=0° indicates fiber alignment with the circumferential axis. (D) The azimuthal 

angle, φ, was computed from the longitudinal-radial plane. An angle of φ=0º indicates 

fiber alignment with the radial axis. * p<0.05 vs. referent control value, § p<0.05 vs. 

four-weeks value. 
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Figure 3.6: Biomechanical response and properties. 

Peak strain (left column) and diastolic strain rate (middle column) underwent similar 

changes in the epicardium, mid-myocardium, and endocardium over five weeks post-

PO. The mean regional diastolic myocardial stiffness (|𝜅𝑀𝑅| right column) was found 

to progressively increase over five-weeks post-PO in both the circumferential and 

longitudinal directions. * p<0.05 vs. baseline value, + p<0.05 vs. one-week value, 
‡ p<0.05 vs. three-weeks value. (BL – three-weeks post-PO: n=15; four-weeks post-PO: 

n=14; five-weeks post-PO: n=7) 
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Figure 3.7: Biomechanical, geometrical, compositional, and microstructural 

correlations. 

A Spearman’s rank correlation analysis was used to interrelate region-matched 

biomechanical response variables (peak strain, diastolic strain rate, and diastolic 

myocardial stiffness (KMR)) with geometrical (wall thickness), compositional (collagen 

volume fraction (CVF)), and microstructural (collagen undulation (𝑢) and orientation 

(ϑ and φ)) response variables. All correlations refer to the terminal study timepoint 

(four-weeks post-PO: n=6; five-weeks post-PO: n=7). * p<0.05 for Spearman’s rank 

correlation coefficient (ρ). (EPI: epicardium; MYO: mid-myocardium; ENDO: 

endocardium) 
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Figure 3.8: A method for predicting the late PO-induced increase in LV chamber 

stiffness based on early measurements of LV geometry, local material stiffness, 

and LV chamber stiffness. 

(A) Region-matched changes in wall thickness and circumferential diastolic myocardial 

stiffness obtained at one-week post-PO (𝐾𝑀𝑅), reported as the mean values among all 

animals (n=14) in the circumferential direction. The observed inverse correlation is 

indicative of adaptive remodeling that mitigates increased wall stress with PO, whereby 

we propose the degree of subject-specific adaptivity is related to the degree to which 

local wall thickening is compensated for by a relatively muted increase in local diastolic 

myocardial stiffness. (B) A predicted value for changes in LV chamber stiffness relative 

to baseline (𝐾𝐶,𝑝𝑟𝑒𝑑.
∗ ) at three-weeks, four-weeks, and five-weeks post-PO was 

generated through multiple linear regression modeling of subject-specific response 

variables using LV chamber stiffness (𝐾𝐶
∗) and (𝜕𝐾𝑀𝑅/𝜕𝐻) taken at one-week post-PO 

as input variables. 𝐾𝐶,𝑝𝑟𝑒𝑑.
∗  significantly correlated with the experimentally measured 

values, suggesting that measurements obtained at one-week post-PO can predict the 

severity of subsequent LV chamber stiffening. 
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CHAPTER 4 

 

ECHOCARDIOGRAPHIC QUANTIFICATION OF THE PASSIVE 

MECHANICAL PROPERTIES OF THE LEFT VENTRICULAR 

MYOCARDIUM  3 
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4.1 ABSTRACT 

Advancing assessment of the rate and extent of left ventricular (LV) remodeling 

holds great value for heart failure (HF) diagnosis and prognosis. While global longitudinal 

myocardial strain determined by speckle-tracking echocardiography (STE) has been 

considered as a remodeling response variable, reported strain measures are limited by the 

masking of regional differences and a dependency on hemodynamic load. Our study entails 

a novel extension of two-dimensional STE to quantify the regional passive mechanical 

properties of the LV myocardium – providing a clinically accessible, load-independent 

response variable that reflects the LV remodeling process. An inverse finite element 

analysis was employed with a pattern search optimization algorithm to identify regional 

indices of passive myocardial stiffness based on STE-derived regional longitudinal strains 

and wall geometries. Our framework was applied in two distinct porcine models of early 

LV remodeling, specifically following myocardial infarction and onset of LV pressure 

overload. Obtained results elucidate regional and temporal changes in passive myocardial 

stiffness throughout early LV remodeling in both animal models. Changes in passive 

myocardial stiffness demonstrate enhanced sensitivity as compared to changes in global 

strain, and strongly correlate with conventional indices of LV remodeling. Regional 

passive myocardial stiffness can be noninvasively determined via STE data processing 

using an inverse finite element framework and provides a sensitive index of LV remodeling 

with potential to aid in HF diagnosis and prognosis. 
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4.2 INTRODUCTION 

Heart failure (HF) is a clinical syndrome which most commonly arises from two 

potentially overlapping physiological causes: impaired left ventricular (LV) ejection 

performance or impaired LV filling. In terms of HF phenotyping, impaired LV ejection 

performance is defined as HF with reduced ejection fraction (HFrEF) while impaired LV 

filling with a stable ejection performance is defined as HF with preserved ejection fraction 

(HFpEF). These HF phenotypes emerge from distinctly different etiologies, whereby 

HFrEF commonly occurs secondary to myocardial injury/ischemia and HFpEF arises from 

a chronic LV pressure overload such as hypertension. In both HFrEF and HFpEF, the LV 

undergoes progressive changes in geometry, composition, and mechanical properties 

collectively known as LV remodeling.52,56,153–156 While nominally an adaptive response, 

LV remodeling underlies HF progression, and consequently its serial assessment holds 

great value in HF diagnosis and prognosis.157–160 

Although commonly used in a clinical setting, global measures of LV function such 

as ejection fraction or volumes can be insensitive to early changes in LV performance and 

thus fail to identify HF development and progression. Alternatively, the assessment of 

regional function through the quantification of LV myocardial strain, defined as the 

fractional change in length of a myocardial segment relative to its baseline length, has 

gained traction recently as a comparatively sensitive index of LV remodeling.161 

Developments in ultrasound-based imaging technology enable serial quantification of LV 

myocardial strain in a clinical setting. Specifically, speckle-tracking echocardiography 

(STE) tracks segmental length changes via the relative movement of intrinsic acoustic 

markers of the LV to quantify regional myocardial strain.7 The analysis of both global 
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(fractional change in total segmental length) and regional longitudinal strain using STE can 

provide diagnostic information in disease states ranging from myocardial infarction to 

cardiotoxicity.64,65,122,134,137  

Despite the demonstrated clinical utility of STE for the assessment of LV 

remodeling, there are clear factors limiting its clinical adoption.162 Firstly, most clinical 

use of STE has been focused on global longitudinal strain despite the availability of 

regional measures – significantly narrowing the field of diagnostic information by masking 

potentially distinct regional changes.161,163,164 Secondly, obtained strain measurements are 

highly dependent on hemodynamics (e.g. blood pressure, heart rate) and assumptions used 

to calculate LV wall geometry.165,166 Not fully accounting for these factors diminishes the 

value of serial STE-based measurements and inter-subject comparisons. 

The objective of the current study is to minimize the load-dependency of STE-

based measurements and more effectively leverage the full field of speckle data to assess 

LV remodeling.  To this end, we integrate STE-derived measures of regional LV geometry 

and myocardial strain along with an estimation of the mechanical load (i.e. ventricular 

pressure) within an inverse finite-element framework to compute regional passive 

myocardial mechanical properties. STE data from porcine models of both ischemia 

reperfusion and LV pressure overload are processed in our inverse framework to generate 

spatiotemporal maps of a passive myocardial stiffness index and the diastolic myocardial 

stress throughout early LV remodeling.  
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4.3 MATERIALS AND METHODS 

4.3.1 Large Animal Models of HFrEF and HFpEF 

For both models of LV failure, mature pigs (Yorkshire, 20-22 kg) were utilized 

whereby HFrEF was induced by intracoronary induction of ischemia-reperfusion while 

HFpEF was induced by LV pressure overload due to progressive ascending aortic 

stenosis.73,109 Briefly,  for the HFrEF protocol, the pigs (n=8) were anesthetized (isoflurane, 

3%/1.5L/min; nitrous oxide, 0.5L/min) and an angioplasty balloon catheter (5F Launcher 

guiding catheter, 0.058-in. HIS, Medtronic, Minneapolis, MN) was placed within the left 

anterior descending artery, immediately below the first obtuse marginal branch, under 

fluoroscopic guidance (Arcadis Varic C-Arm, Siemens, Munich, DE). After 90 minutes of 

coronary occlusion, the balloon was deflated and the catheter system was removed. This 

approach resulted in a reproducible apical anterior myocardial infarction, and over time a 

reduction in LV ejection fraction (LVEF) – thus recapitulating the HFrEF phenotype.73,122 

For HFpEF induced by LV pressure overload, pigs (n=9) were anesthetized as described 

above, and the ascending aorta accessed through a left thoracotomy. An inflatable silastic 

vascular cuff (12mm, Access Technologies, Skokie, IL) was secured around the 

supracoronary ascending aorta and connected to a subcutaneous access port. Serial 

hydraulic-mediated cuff inflation was initiated following a one-week recovery period, in 

which the cuff was inflated through the access port (via 0.45 mL glycerol) to achieve a 

specific target gradient of 75 mmHg across the cuff and induce LV pressure overload. At 

weekly intervals thereafter, the cuff was further inflated (0.25 mL increments) to cause a 

stepwise increase in the pressure gradient (25 mmHg increase/inflation).  
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All animals were treated and cared for in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals (Eighth Edition. Washington, 

DC: 2011) and all experimental protocols were approved by Institutional Animal Care and 

Use Committees at the University of South Carolina. 

4.3.2 Serial Echocardiographic Studies   

The day before animals underwent either coronary occlusion or placement of the 

aortic cuff, the pigs were sedated (diazepam, 200 mg), placed in a custom-designed sling, 

and transthoracic echocardiographic studies were performed (GE Vivid E9 with XDclear 

Ultrasound System; M5S (3.3 MHz, 40 FPS) transthoracic probe). Two-dimensional 

echocardiographic cine loops were acquired from a transthoracic right parasternal 

approach. The left atrium (LA) and LV were imaged in both the short- and long-axis views. 

Pulse-wave and tissue Doppler studies were performed to determine flow velocities and 

pressure gradients.167 

 The pigs were then returned to the laboratory for follow-up imaging studies 

under identical conditions and approaches, whereby the HFrEF pigs were returned for 

imaging studies at 14 and 28 days post-coronary occlusion and the HFpEF pigs were 

returned to the laboratory at 7, 14, 21, and 28 days for both imaging studies and serial 

hydraulic-mediated expansion of the aortic cuff under echocardiographic guidance and 

sterile conditions as described previously.109 

4.3.3 Post-Acquisition Analysis of LV Function and Geometry 

The digital echocardiographic images were transferred to a workstation for offline 

analysis (EchoPac, Vingmed, GE). LV end-diastolic volume (EDV) and LVEF were 

calculated using the biplane method of disks. LA area was determined from the 
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anteroposterior dimensions acquired from the parasternal long axis view. For each digital 

loop, a region of interest (ROI) was defined at the onset of the R-wave by manually 

identifying the endocardial and epicardial borders. The ROI was then discretized with a 

spatial mesh of acoustic clusters to be tracked on a frame-to-frame basis throughout a single 

cardiac cycle.7 Quantitative strain analysis (Q-analysis) was performed, regional tracking 

quality was assessed, and the ROI was manually adjusted by the operator to improve 

tracking quality where necessary. Successful tracking of the ROI allowed for the definition 

of segmental lengths which were computed at end-diastole (L0) and continuously 

throughout the cardiac cycle (L). Segmental strains (𝜀) were then computed as: 

𝜀 =
𝐿−𝐿0

𝐿0
=

∆𝐿

𝐿0
,  (4.1) 

where the reference length refers to the end-to-end length in the longitudinal direction of a 

particular echocardiographic segment (i.e. basal posterior, mid posterior, apical posterior, 

apical anterior septum, mid anterior septum, or basal anterior septum) or, in the case of 

global longitudinal strain, the end-to-end length of the mid-myocardium in the longitudinal 

direction (i.e. from the basal posterior, to the apex, and then to the basal anterior septum). 

Subsequently, spatial coordinates of the mid-myocardial nodes were exported for each 

frame of the digital loop. Additionally, wall thickness was collected at early- and end-

diastole for each of the six conventional echocardiographic segments. Pulmonary capillary 

wedge pressure (PCWP) was subsequently calculated using the method proposed by 

Nagueh et al in 1997.168 

4.3.4 Formulation of the Finite-Element Mesh 

The initial, unloaded, LV configuration was generated from the position of the mid-

myocardial nodes at the onset of diastole, the point at which the cross-sectional area was 
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at a minimum. For each mid-myocardial node, a thickness was defined by computing a 

cubic spline interpolation between the known thicknesses at the onset of diastole of the six 

echocardiographic segments. Endocardial and epicardial nodes were subsequently 

generated based on the position of the mid-myocardial nodes and estimated thicknesses. 

The finite-element mesh was constructed from this reference geometry composed of a 

monolayer of eight-node trilinear hexahedral elements with two elements spanning the 

distance between each of the mid-myocardial nodes and eight elements spanning the 

distance between the pairs of endocardial and epicardial nodes (Figure 4.1A-C). This 

process was also completed for the end-diastolic configuration to enable calculation of the 

objective function as detailed below (Figure 4.1D-F).  

4.3.5 Material Model and Boundary Conditions 

The LV myocardium was modeled as a transversely isotropic Mooney-Rivlin solid, 

a model well-suited for biological soft tissues with a preferred fiber direction.169 The 

uncoupled strain energy function is: 

𝑊 = 𝐹1(𝐼1̃, 𝐼2̃) + 𝐹2(�̃�) +
𝐾

2
[ln(𝐽)]2,  (4.2) 

where 𝐾 is the bulk modulus-like penalty parameter and 𝐽 is the determinant of the 

deformation gradient tensor. The function 𝐹1(𝐼1̃, 𝐼2̃), a function of the first and second 

invariants of the deviatoric right Cauchy-Green deformation tensor, represents the material 

response of the isotropic Mooney-Rivlin ground substance matrix of the form: 

𝐹1(𝐼1̃, 𝐼2̃) = 𝑆[𝐶1(𝐼1̃ − 3)] + 𝑆[𝐶2(𝐼2̃ − 3)] +
𝐾

2
[ln(𝐽)]2  (4.3) 
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where 𝐶1 and 𝐶2 are the material coefficients and 𝑆 is the regional stiffness index. 𝐹2(�̃�), 

a function of the fiber stretch ratio, represents the contribution from the fiber family with 

a strain energy of the following form: 

𝐹2(�̃�) = {

0 �̃� ≤ 1

𝐶3 [𝑒−𝐶4 (𝐸𝑖(𝐶4�̃�) − 𝐸𝑖(𝐶4)) − ln �̃�] 1 < �̃� < 𝜆𝑚

𝐶5(�̃� − 1) + 𝐶6 ln �̃� �̃� ≥ 𝜆𝑚

 (4.4) 

where 𝐶3 scales the exponential term, 𝐶4 is the fiber crimping coefficient, 𝐶5 is the modulus 

of the straightened fibers, and 𝜆𝑚 is the stretch at which the fibers are straightened. 

Furthermore, 𝐸𝑖(∙) is the exponential integral function and 𝐶6 is determined from stress 

continuity requirements. The fiber orientation was specified for each element to be 15º 

relative to the longitudinal axis on the longitudinal-radial plane with a 𝜆𝑚 of 1.10. The 

remaining material parameters, barring the regional stiffness index, were valued in 

accordance with prior work on biaxial testing on excised canine hearts.17 The regional 

stiffness index, 𝑆, was determined from the optimization scheme described in the following 

section. 

Two quasi-static structural mechanics steps were defined as follows. In step one, a 

prescribed translation was applied to the basal nodes from the undeformed configuration 

to the expected position at end-diastole as determined from STE. In step two, the basal 

node positions were fixed, and the end-diastolic pressure was applied to the endocardial 

surface.170 To mimic the tethering effects of the right ventricle and the pericardium, an 

opposing pressure was applied to the basal and mid-ventricular epicardial nodes with a 

magnitude of 25% of that of the intraventricular pressure.171,172 The solution was computed 

using the PARDISO linear solver within the FEBio application.173,174 
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4.3.6 Identification of Material Properties 

An objective function (𝛱) of the form: 

𝛱 = (
𝐴′−𝐴

𝐴
+ ∑ (

𝜀𝑖
′−𝜀𝑖

𝜀𝑖
)6

𝑖=1 +
𝑡′̅−�̅�

�̅�
) × 100% (4.5) 

was developed as a function of the actual end-diastolic area (𝐴), regional strain (𝜀𝑖) relative 

to the undeformed mesh, and mean wall thickness (𝑡̅) determined from the end-diastolic 

mesh (Figure 4.1F). Additionally, 𝐴′, 𝜀𝑖
′, and 𝑡′̅ represent the end-diastolic area, regional 

strain relative to the undeformed mesh, and mean wall thickness computed from the 

deformed FE model, respectively. The factors entering the optimization scheme were the 

stiffness indices (𝑆) defined at the center of each of the six conventional anatomical 

segments of the LV. A cubic spline interpolation was used to define a continuous 

distribution of stiffness indices between the six segments. A pattern search optimization 

algorithm, ideal for the minimization of a non-differentiable objective function, was 

employed to identify an optimal set of stiffness indices coincident with the global minimum 

of the objective function. The pattern search algorithm was terminated when a successful 

poll resulted in a change in the objective function of less than 1E-6 (Figure 4.2).  

The optimization process was conducted on a workstation with an eight-core 

processor (3.7 GHz) and 32 GB of RAM. After optimization was complete, a final 

simulation with a refined FE mesh and assigned regional values of S was performed, thus 

facilitating the calculation of the first principal stress field. 

4.3.7 Statistical Analysis 

Data are reported as the mean ± standard error of the mean. Comparative analyses 

between the two groups were performed using a two-way analysis of variance followed by 
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pair-wise comparisons using the least significant difference post hoc study. A Pearson 

correlation analysis was used to interrelate classical echocardiographic indices with those 

derived from regional inverse analyses. A p-value of less than 0.05 was considered 

statistically significant. All statistical analyses were performed in MATLAB (version 

R2018a, The MathWorks Inc). 

 

4.4 RESULTS 

4.4.1 Left Ventricular Function and Geometry 

LV function and geometry at baseline and at the two specified time points (14 and 

28 days) are shown in Table 4.1. In the HFrEF group, LVEF was reduced and LV dilation 

occurred; consistent with the HFrEF phenotype. In the HFpEF group, LVEF and LV 

volume were unchanged, whereas LA area increased; consistent with the HFpEF 

phenotype. Spatial mapping of regional LV longitudinal strain showed an overall reduction 

in the HFrEF group, with the greatest reductions occurring in the mid- and apical-anterior 

regions. In marked contrast, regional LV longitudinal strain remained comparatively 

preserved in the HFpEF group (Figure 4.3A). Global LV longitudinal strain fell by 

approximately 50% from baseline at both 14 and 28 days in the HFrEF group, whereas 

there was no change in the HFpEF group (Figure 4.3B). The relative heterogeneity of LV 

strain, reflected by the coefficient of variation among regional strains, more than doubled 

in the HFrEF group by 28 days but remained unchanged in the HFpEF group 

(Figure 4.3B).  
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4.4.2 Inverse Estimation of Regional Stiffness Indices 

For each case, the pattern search optimization algorithm was initiated, and the 

relative error in regional strain, mean wall thickness, and LV area was quantified through 

the objective function (𝛱) for each set of stiffness indices defined by the algorithm. A 

global minimum of the objective function was reached through iterative refinement of the 

stiffness indices for all cases with an average convergence time of 48.6±3.4 minutes. The 

minimum objective function values obtained for the HFrEF group at both 14 days and 28 

days were found to be significantly elevated relative to baseline values (𝛱=11.8±1.4 

(baseline) vs. 𝛱=28.3±7.7 (14 days) and 𝛱=35.3±6.9 (28 days), p<0.05). In contrast, 

insignificant changes in the obtained minimum objective function values were observed in 

the HFpEF group between baseline and 28 days. Elevated objective function values in the 

HFrEF group are an expected consequence of the increasingly heterogeneous wall 

geometry and mechanical behavior associated with the induced LV remodeling. 

Changes in myocardial passive stiffness of the HFrEF group exhibited obvious 

regional dependence, exemplified at 28 days by the nearly order-of-magnitude higher 

stiffness index in the infarcted apical anterior region as compared to the remote 

myocardium (80.6±14.9 vs. 8.6±2.7) (Figure 4.4A). The global stiffness index, defined as 

the spatial-average of the passive regional stiffness indices, reached a maximum at 14 days 

in the HFrEF group and remained elevated relative to baseline at 28 days (Figure 4.4B). 

While changes in the global stiffness index in the HFpEF group were attenuated in 

comparison to the HFrEF group, a greater than three-fold increased relative to baseline was 

observed at 28 days. The relative heterogeneity of stiffness, taken as the coefficient of 
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variation among regional stiffness indices, was significantly elevated in the HFrEF group 

relative to both baseline and the HFpEF group at both 14 and 28 days (Figure 4.4B). 

4.4.3 Myocardial Wall Stress 

Subsequent simulations that incorporate the identified local stiffness indices 

allowed for quantification of the 1st principal stress field at end-diastole. At both 14 and 28 

days, the maximal regional stress observed in the HFrEF group was coincident with the 

location of the ischemic injury, while a qualitatively more uniform stress distribution was 

observed in the HFpEF group (Figure 4.5A). The global 1st principal stress, defined as the 

spatial-average of 1st principal stress, was elevated relative to baseline in both groups at 14 

and 28 days, with significantly higher stresses in the HFrEF group compared to the HFpEF 

group (Figure 4.5B). 

4.4.4 Correlation Analysis 

A correlation matrix was developed for each group to relate established indices of 

global function and geometry to computed biomechanical indices (Figure 4.6). In the 

HFrEF group, global LV longitudinal strain positively correlated with LVEF and 

negatively correlated with LV volume and LA area. Inverse relations were observed when 

these indices were correlated with global stiffness index and global 1st principal stress. 

Conversely in the HFpEF group, there was no correlation between global LV longitudinal 

strain and LV ejection fraction, volume, or LA area. Notably, LA area, an index of 

progressive HF, exhibited strong positive correlations with the computed global stiffness 

index and global 1st principal stress in both the HFrEF and HFpEF groups. 
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4.5 DISCUSSION 

The structural and functional milestones for the development and progression to 

heart failure (HF) are changes in LV structure and function – commonly termed myocardial 

remodeling. This process is manifested at the regional myocardial level, and thus, 

approaches which can identify and be sensitive to changes in regional myocardial 

mechanics would allow for early detection in patients at risk for HF progression. While 

past studies using magnetic resonance imaging and post-processing algorithms have 

identified the potential relevance of assessing regional mechanics in patients with 

developing HF, this approach can be problematic. Firstly, this imaging approach is not 

amenable to point-of-care application and analysis. Secondly, this imaging approach is not 

readily amenable to repeated, serial measurements in terms of screening and identifying 

HF progression. Accordingly, the major significance of this study was to put-to-practice a 

methodology and framework to quantify myocardial mechanical properties based on post-

processing of typically available echocardiographic data.  

While HF is a term which applies to the spectrum of symptoms, it is important to 

phenotype the underlying HF process. In that regard, it is now recognized by consensus 

that HFrEF and HFpEF are two distinct phenotypes, with differing etiologies, trajectories 

to HF, and, most importantly, distinctly different forms of LV dysfunction. To that end, we 

developed a novel approach to quantify myocardial mechanical properties and applied it to 

relevant large animal models of HFrEF and HFpEF. Our results demonstrated the utility of 

this approach in terms of serial measurements and revealed distinctly different patterns of 

regional myocardial mechanical changes in HFrEF and HFpEF. This work underscores the 
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need for sensitive assessments of LV regional mechanical performance to identify the 

development and progression of these HF phenotypes. 

4.5.1 Building Upon Prior Studies 

Even though the present study developed a regional LV stiffness index which is 

unique to this study, relative comparisons to other studies can be made. Specifically, 

elevations in the LV stiffness index with HFrEF, which peaked at 14 days post-MI, reflect 

similar trends in mechanical property indices reported in both in-vivo and ex-vivo 

studies.57,76,79,81,122,175 Furthermore, the more progressive increases in this LV stiffness 

index with HFpEF is in agreement with observations made in both small and large animal 

models of LV pressure overload-induced hypertrophy.18,132,133,176 However, it should be 

emphasized that the increased LV stiffness index in both HFrEF and HFpEF does not imply 

similar biological or physiological underpinnings. Specifically, in HFrEF secondary to MI, 

the predominant contribution to the increased global LV stiffness index was contained 

within the MI regions; reflective of scar formation and collagen accumulation. Contrarily 

in HFpEF, the LV stiffness index was due to a more global shift; reflective of the more 

diffuse collagen accumulation (i.e. fibrosis).  The present study demonstrated that these 

distinctly different patterns of LV myocardial stiffness could be identified in both a spatial 

and temporal fashion. 

4.5.2 Clinical Translation 

The approaches applied to these preclinical large-animal models was then put-to-

practice in terms of deployment as a complete software application (Figure 4.7A) using a 

de-identified transthoracic echocardiographic study (privacy policies set forth by the 

Department of Veteran’s Affairs Cooperative Studies) of a patient with defined HFpEF 



www.manaraa.com

  

92 

 

(i.e. elevated LV filling pressure and LA enlargement). Using the methodological 

approaches described herein, the heterogeneous distribution of stiffness indices and 

1st principal Cauchy stress was computed (Figure 4.7B-D). As presented, this technology 

can be directly translated into a clinical setting as a complement to current standard-of-care 

echocardiography studies.  

4.5.3 Future Directions 

While this proof-of-concept study was completed on a workstation as a post-

processing step for previously acquired images, it is feasible to translate this methodology 

to a server or cloud-computing framework to allow for direct incorporation into standard 

echocardiography machines. The FE solver and optimization algorithm employed in this 

study utilize parallelization of computational cores. Therefore, incorporating this 

framework into a many-threaded computational platform will drastically improve 

computational time – increasing the likelihood of translating this analysis in a clinical 

setting.162 Furthermore, it is reasonable to assume an evolution of this technology which 

bypasses the inverse FE optimization all-together. Once this technology has been applied 

to enough cases, there will be a large library of evidence detailing the dynamic interplay 

between regional passive mechanical property changes and various forms of heart disease. 

A future evolution of this technology could be developed as a form of artificial intelligence 

informed by a supervised machine learning algorithm to predict the evolution of regional 

myocardial stiffness and stresses for a given patient based on the body of evidence 

previously collected from other patients. 
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4.5.4 Methodological Limitations 

The present study demonstrates that an inverse methodology can be reasonably 

performed to estimate the passive mechanical properties of the LV myocardium relevant 

to a clinical context. However, several methodological limitations must be considered. 

First, while our results are in qualitative agreement with previously reported findings, in-

vivo quantification of mechanical properties should be validated against results obtained 

from ex-vivo mechanical testing and modeling. Furthermore, given the inherent mechanical 

nonlinearity of the myocardium, the resultant passive stiffness indices refer only to a 

specific (low pressure) component of the overall myocardial mechanical response. 

Additionally, prior studies have shown shifts in the predominant collagen fiber orientation 

and undulation as a consequence of disease progression and relative position in the 

LV.34,177 While this study assumes a constant fiber angle on the longitudinal-radial plane 

and a constant degree of fiber undulation, future iterations of the model will incorporate 

these known variations. Finally, the model is limited to two-dimensions and exhibits 

sensitivity to the applied boundary conditions. Future work will be focused on translating 

this framework to three-dimensions and the application of increasingly realistic boundary 

conditions. 

4.5.5 Conclusion 

The methods and framework proposed herein promote passive myocardial 

mechanical property identification, and therefore could help evaluate the rate and extent of 

LV remodeling in the context of heart disease. This type of noninvasive, point-of-care 

analysis has the potential to significantly improve cardiovascular disease diagnostics and 

inform clinicians and researchers on patient-specific disease progression. 
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4.7 TABLES 

Values are means ± SE. * p<0.05 vs. the respective baseline value. (LVEF: left ventricular 

ejection fraction; EDV: end diastolic volume; BW: body weight; LA: left atrium) 

Table 4.1: Echocardiographic estimation of indices of left ventricular geometry 

and function 

Treatment Day LVEF (%) EDV/BW (mL/kg) LA Area (cm2)

Baseline (17) 0 64.6 ± 1.3 1.6 ± 0.1 6.2 ± 0.3

HFrEF (8)
14 37.8 ± 2.3* 2.8 ± 0.2* 10.1 ± 0.4*

28 37.5 ± 3.4* 2.6 ± 0.2* 11.0 ± 0.4*

HFpEF (9)
14 63.8 ± 1.0 1.6 ± 0.2 9.9 ± 0.5*

28 66.1 ± 1.0 1.5 ± 0.1 11.3 ± 0.5*
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4.8 FIGURES 

 

Figure 4.1: Formulation of the finite element mesh. 

(A, D) At both end-systole and end-diastole, quantitative strain analysis was performed 

on LV long-axis echocardiographic images. (B, E) Epicardial, mid-myocardial, and 

endocardial nodes were defined from the mid-myocardial strain analysis position data 

and regional thickness measurements. (C, F) A eight-node trilinear hexahedral FE mesh 

was formulated with two elements spanning the distance between each of the mid-

myocardial nodes and eight elements spanning the distance between the pairs of 

endocardial and epicardial nodes 
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Figure 4.2: Inverse methodology to identify mechanical properties from STE. 

(A) From the echocardiographic cine loops, mid-myocardial position data, regional wall 

thickness, and estimations of PCWP were acquired. A FE model is generated from the 

initial end-systolic geometry and boundary conditions are defined for two quasi-static 

simulation steps. An initial guess for the regional stiffness indices is defined and the 

converged solution was attained from a PARDISO linear FE solver. (B) The objective 

function (𝛱) value is determined and evaluated against the stopping criteria. If stopping 

criteria is not met, regional stiffness indices were re-defined from the pattern search 

optimization algorithm. After the stopping criteria is satisfied, a final regional 

distribution of stiffness indices is acquired, and end-diastolic longitudinal and radial 

stress are calculated. The pattern search optimization algorithm iteratively explored 

combinations of regional stiffness indices until a minimum value of the objective 

function (𝛱) was attained. As the objective function is minimized, the regional strain 

computed from the FE model converged upon the experimentally measured regional 

strain. 

(A) (B)
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Figure 4.3: Changes in peak longitudinal strain throughout disease progression. 

(A) Spatial maps of the absolute value of the peak LV longitudinal segmental strain 

determined directly from quantitative STE were generated for each of the two study 

groups at baseline as well as 14 and 28 days after the onset of disease. (B) The global 

LV longitudinal strain, taken as the fractional change in the total length of the LV cross-

section, was determined for each subject over time. The relative heterogeneity of strain, 

taken as the coefficient of variation between each of the regional measurements, was 

determined for each subject over time. * p<0.05 vs. respective baseline value; + p<0.05 

vs. respective HFpEF value. 
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Figure 4.4: Dynamic changes in regional mechanical stiffness throughout disease 

progression. 

The inverse method of identifying mechanical properties was applied to each subject at 

baseline as well as 14 and 28 days after the onset of disease. (A) Representative cases 

of both heart disease models demonstrate heterogeneous regional changes in 

mechanical stiffness as the disease progresses. (B) The spatially-averaged global 

stiffness index was determined for each subject over time. Additionally, the relative 

heterogeneity of stiffness, taken as the coefficient of variation for each subject, was 

determined for each subject over time. * p<0.05 vs. respective baseline value; + p<0.05 

vs. respective HFpEF value. 
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Figure 4.5: Determination of end diastolic myocardial wall stress. 

The 1st principal stress throughout the myocardium was computed for each subject at 

baseline as well as 14 and 28 days after the onset of disease. (A) Representative cases 

of both heart disease models demonstrate the spatial variance of 1st principal stress and 

the extent to which this is altered throughout the progression of the disease. (B) The 

spatial-average of 1st principal stress (i.e. global 1st principal stress) was determined for 

each subject over time. * p<0.05 vs. respective baseline value; + p<0.05 vs. respective 

HFpEF value. 
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Figure 4.6: Correlation between biomechanics and global indices of geometry and 

function. 

A Pearson correlation was used to interrelate standard echocardiographic response 

variables (LVEF, EDV/BW, and LA Area) with patient-matched changes in 

biomechanical response variables (GLS, GSI, and Stress) in each disease model. 

* p<0.05 for the Pearson correlation coefficient (ρ). (LVEF: left ventricular ejection 

fraction; EDV: end-diastolic volume; BW: body weight; LA: left atrium; GLS: global 

LV longitudinal strain; GSI: global stiffness index; Stress: spatial-average of 1st 

principal stress) 
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Figure 4.7: Clinical translation of methodology. 

(A) This methodological process was compiled within a novel software application 

designed for clinical use and applied on transthoracic echocardiographic images 

obtained from a human subject. Quantitative strain analysis was performed, (B) a FE 

mesh was generated from the end-systolic geometry, and (C) the inverse method of 

identifying mechanical properties was applied to identify a distribution of stiffness 

indices. (D) Post-processing of the FE results allows for the calculation of first principal 

stress at end-diastole. 
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CHAPTER 5 

THESIS SUMMARY AND CONCLUSION 

5.1 MAJOR CONTRIBUTIONS TO THE FIELD 

The seminal principal of biomechanics is the fact that the structure and function of 

a given tissue is a consequence of its mechanobiological environment. As the incidence of 

heart failure continues to rise along with the aging population in the United States, a 

comprehensive understanding of the mechanobiological factors that influence the 

progression of the disease will be of vital importance. To that end, we employed a multi-

disciplinary approach to study the dynamic interplay between myocardial geometry, the 

collagen microstructure, mechanical behavior, and mechanical properties in response to 

both myocardial infarction and left ventricular pressure overload. The significant and 

noteworthy contributions to the field were two-fold. First, we pioneered a non-invasive 

approach to quantify the mechanical properties of the LV myocardium using STE. We 

accomplished this first through the use of stress-strain relations and a modified thick-

walled ellipsoid model. We then improved upon this with an inverse finite element 

framework to identify the heterogeneous field of mechanical properties for both large 

animal models of heart failure. This work was put to practice in a prospective analysis of a 

HFpEF patient after deployment of the methodology into an all-inclusive software 

package. Second, in both models of heart failure, we identified potential therapeutic targets. 



www.manaraa.com

  

104 

 

Our analysis of the mechanical properties in the post-MI LV (Chapter 2) showed a 

significant drop in mechanical stiffness in the non-viable MI region between 14- and 28-

days post-MI and increases in the stiffness of the viable remote myocardium over that same 

period of time. These observations were coincident with increases in end diastolic volume 

and LV filling pressure. While it is difficult to discern cause-and-effect relationships 

between structural and mechanical changes, these findings underscore the potential 

therapeutic benefits of mechanically stabilizing the MI region early in the remodeling 

process (e.g. with biomaterial injections). Furthermore, the correlative analysis performed 

between microstructural changes and mechanical changes in the pressure-overloaded LV 

(Chapter 3) revealed that the reorganization of the microstructure further modulates the 

increase in mechanical stiffness late in the remodeling process. Specifically, we observed 

a reduction in fiber undulation and preferential orientation in the circumferential direction 

that resulted in elevated passive stiffness of the myocardium. Future work focused on 

limiting this microstructural reorganization could potentially improve diastolic filling by 

restoring the native compliance of the LV. 

5.2 FUTURE WORKS 

The immediate future of these works is to expand upon the multi-photon SHG 

imaging and inverse finite element analysis approach to develop a structure-motivated 

platform to identify the constitutive properties of the post-MI LV. We have performed an 

initial analysis of the collagen structure in the MI region three (n=3), seven (n=3), 14 (n=4), 

and 28 (n=3) days post-MI from a porcine model of left anterior descending artery ligation 

along with a cohort of referent control samples (n=3) (Figure 5.1A). Three-dimensional 

analysis of the collagen fiber network showed a relative increase in frequency of lower 
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values of undulation in all three layers studied as early as three days post-MI. This trend is 

shown to peak at 14 days post-MI which coincides with the time at which the infarcted 

myocardium has been shown to reach peak passive mechanical stiffness.81,122 Furthermore, 

this analysis confirms previously reported claims that collagen fibers become more 

circumferentially aligned after MI with the majority of fibers found to be within 

approximately 20° of the circumferential axis at 28 days post-MI.34 The azimuthal fiber 

angle and undulation in each of the epicardium, mid-myocardium, and endocardium has 

been incorporated into a multi-layered finite element model of the two-dimensional LV 

(Figure 5.1B). A modification of the framework introduced in Chapter 4 will be applied 

to these models so as to allow for the identification of the full set of parameters of the 

transversely-isotropic Mooney-Rivlin constitutive model. Furthermore, this analysis will 

shed further light on the extent to which the reorganization of the microstructure influences 

the passive mechanical properties of the post-MI LV. 

Furthermore, while the work presented in Chapter 4 specifically relates to the LV, 

the same methodology can be extended to other soft tissues within the body. This extension 

would be contingent on two factors: (1) access to an image modality which would allow 

for the successful tracking of the tissue deformation in response to a given load and (2) an 

accurate estimation of the in-vivo load exerted on the tissue. Candidate applications of 

potentially high clinical value include assessment of thoracic or abdominal aortic 

aneurysms. First, the irregular geometries of these structures negate the use of analytical 

approaches to identify constitutive model parameters and challenge the quantification of 

wall stress distributions. Furthermore, STE and magnetic resonance have been previously 

applied to track aortic deformation during and after ventricular ejection.178,179 Finally, 
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doppler echocardiography can be used to generate a reasonable estimation of aortic 

pressure.180 Given the fact that surgical repair of aortic aneurysms carries a mortality rate 

approaching 10%,181 this detailed mechanical analysis would provide surgeons with 

complimentary data for patient risk stratification and surgical decision making.   
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5.3 FIGURES  
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Figure 5.1: Structure-motivated model enables a transient analysis of the 

heterogeneous mechanical properties of the post-MI left ventricle. 

(A) Regional undulation was computed for the epicardial, mid-myocardial, and 

endocardial sections of the MI region. Elevation angle, ϑ, was computed from the 

circumferential-longitudinal plane. An angle of ϑ=0° is defined as a fiber perfectly 

aligned with the circumferential axis. Azimuthal angle, φ, was computed from the 

longitudinal-radial plane. An angle of φ=0º is defined as a fiber perfectly aligned with 

the radial axis. (B) Two-dimensional computational models were generated from 

echocardiographic images with spatial discretization of the remote myocardium (blue), 

border zone (orange), and the MI region (red). Future inverse finite element analysis 

will allow for the identification of the full set of parameters of the transversely-isotropic 

Mooney-Rivlin constitutive model.  

 



www.manaraa.com

 

 

108 

 

REFERENCES 

1.  Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular 

remodeling in heart failure: Current concepts in clinical significance and 

assessment. JACC Cardiovasc Imaging [Internet]. 2011;4:98–108. Available from: 

http://dx.doi.org/10.1016/j.jcmg.2010.10.008 

2.  Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, 

Douglas PS, Faxon DP, Gillam LD, Kimball TR, Kussmaul WG, Pearlman AS, 

Philbrick JT, Rakowski H, Thys DM. ACC/AHA/ASE 2003 guideline update for 

the clinical application of echocardiography: Summary article. J Am Soc 

Echocardiogr. 2003;16:1091–1110.  

3.  Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, 

Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, 

Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. 

Recommendations for cardiac chamber quantification by echocardiography in 

adults: An update from the American society of echocardiography and the 

European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 

2015;16:233–271.  

4.  Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. 

Echocardiographic assessment of left ventricular hypertrophy: Comparison to 

necropsy findings. Am J Cardiol. 1986;57:450–458.  

5.  Klein AL, Gillebert TC, Flachskampf FA, Oh JK, Lancellotti P, Appleton CP, 

Dokainish H, Marino P, Byrd BF, Nagueh SF, Edvardsen T, Alexandru Popescu B, 

Waggoner AD, Smiseth OA. Recommendations for the Evaluation of Left 

Ventricular Diastolic Function by Echocardiography: An Update from the 

American Society of Echocardiography and the European Association of 

Cardiovascular Imaging. Eur Hear J – Cardiovasc Imaging. 2016;17:1321–1360.  

6.  Quiñones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. 

Recommendations for quantification of Doppler echocardiography: A report from 

the Doppler quantification task force of the nomenclature and standards committee 

of the American Society of Echocardiography. J Am Soc Echocardiogr [Internet]. 

2002;15:167–184. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S089473170245599X 

7.  Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, 



www.manaraa.com

  

109 

 

Krakover R, Vered Z. Two-dimensional strain - A novel software for real-time 

quantitative echocardiographic assessment of myocardial function. J Am Soc 

Echocardiogr. 2004;17:1021–1029.  

8.  Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, 

Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, 

Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL. 

Current and evolving echocardiographic techniques for the quantitative evaluation 

of cardiac mechanics: ASE/EAE consensus statement on methodology and 

indications endorsed by the Japanese society of echocardiography. Eur J 

Echocardiogr. 2011;12:167–205.  

9.  Axel L, Dougherty L. MR imaging of motion with spatial modulation of 

magnetization. Radiology [Internet]. 1989;171:841–845. Available from: 

http://pubs.rsna.org/doi/10.1148/radiology.171.3.2717762 

10.  Azhari H, Weiss JL, Rogers WJ, Siu CO, Zerhouni E a, Shapiro EP. Noninvasive 

quantification of principle strains in normal canine hearts using tagged MRI 

images in 3D. Am J Physiol [Internet]. 1993;264:H205-16. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/8430847 

11.  Marcu CB, Beek AM, Rossum AC Van. Clinical applications of cardiovascular 

magnetic resonance imaging. 2006;911–917.  

12.  Pinto JG, Fung YC. Mechanical properties of the heart muscle in the passive state. 

J Biomech. 1973;6:597–606.  

13.  Pinto JG, Fung YC. Mechanical properties of the stimulated papillary muscle in 

quick-release experiments. J Biomech. 1973;6:617–630.  

14.  Demer LL, Yin FCP. Passive Biaxial Mechanical Properties of Isolated Canine 

Myocardium. J Physiol. 1983;339:615–630.  

15.  Lin DHS, Yin FCP. A Multiaxial Constitutive Law for Mammalian Left 

Ventricular Myocardium in Steady-State Barium Contracture or Tetanus. J 

Biomech Eng. 1998;120:504–517.  

16.  Guccione JM, McCulloch AD, Waldman LK. Passive Material Properties of Intact 

Ventricular Myocardium Determined From a Cylindrical Model. J Biomech Eng. 

1991;113:42–55.  

17.  Novak VP, Yin FCP, Humphrey JD. Regional Mechanical Properties of Passive 

Myocardium. 1994; 

18.  Yin FC, Spurgeon H a, Weisfeldt ML, Lakatta EG. Mechanical properties of 

myocardium from hypertrophied rat hearts. A comparison between hypertrophy 

induced by senescence and by aortic banding. Circ Res. 1980;46:292–300.  

19.  Humphrey JD, Strumpf RK, Yin FCP. Determination of a Constitutive Relation for 

Passive Myocardium: I. A New Functional Form. J Biomech Eng [Internet]. 



www.manaraa.com

  

110 

 

1990;112:333. Available from: 

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.28

91193 

20.  Humphrey JD. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. 2002.  

21.  Mirsky I, Pasipoularides A. Clinical Assessment of Diastolic Function. Prog 

Cardiovasc Dis. 1990;4:291–318.  

22.  Tomita M, Spinale F, Crawford FA, Zile MR. Changes in Left Ventricular Volume 

, Mass , and Function During the Development and Regression of Supraventricular 

Tachycardia-Induced Cardiomyopathy. Circulation. 1991;83:635–645.  

23.  Zile MR, Tomita M, Ishihara K, Nakano K, Lindroth J, Spinale F, Swindle M, 

Carabello BA. Changes in diastolic function during development and correction of 

chronic LV volume overload produced by mitral regurgitation. Circulation. 

1993;87:1378–1388.  

24.  Janz RF. Estimation of Local Myocardial Stress. Am J Physiol. 1982;242:H875–

H881.  

25.  Wenk JF, Sun K, Zhang Z, Soleimani M, Ge L, Saloner D, Wallace AW, Ratcliffe 

MB, Guccione JM. Regional left ventricular myocardial contractility and stress in 

a finite element model of posterobasal myocardial infarction. J Biomech Eng. 

2011;133:044501.  

26.  McGarvey JR, Mojsejenko D, Dorsey SM, Nikou A, Burdick JA, Gorman JH, 

Jackson BM, Pilla JJ, Gorman RC, Wenk JF. Temporal Changes in Infarct 

Material Properties: An In Vivo Assessment Using Magnetic Resonance Imaging 

and Finite Element Simulations. Ann Thorac Surg [Internet]. 2015;100:582–589. 

Available from: http://linkinghub.elsevier.com/retrieve/pii/S0003497515003963 

27.  Wenk JF, Eslami P, Zhang Z, Xu C, Kuhl E, Gorman JH, Robb JD, Ratcliffe MB, 

Gorman RC, Guccione JM. A Novel Method for Quantifying the In-Vivo 

Mechanical Effect of material Injected into a Myocardial Infarction. Ann Thorac 

Surg. 2011;92:935–941.  

28.  Dorri F. A Finite Element Model of the Human Left Ventricular Systole, Taking 

Into Account the Fibre Orientation Pattern.  

29.  Costa KD, Holmes JW, McCulloch AD. Modelling cardiac mechanical properties. 

Philos Trans A Math Phys Eng Sci. 2001;359:1233–1250.  

30.  Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, De Ferranti SD, 

Floyd J, Fornage M, Gillespie C, Isasi CR, Jim’nez MC, Jordan LC, Judd SE, 

Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, MacKey RH, 

Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan 

L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, 

Rosamond WD, Sasson C, Towfghi A, Tsao CW, Turner MB, Virani SS, Voeks 



www.manaraa.com

  

111 

 

JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P. Heart 

Disease and Stroke Statistics’2017 Update: A Report from the American Heart 

Association. Circulation. 2017; 

31.  Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, 

Meverden RA, Roger VL. Systolic and Diastolic Heart Failure in the Community. 

JAMA. 2006; 

32.  Bronzwaer JGF, Paulus WJ. Diastolic and systolic heart failure: Different stages or 

distinct phenotypes of the heart failure syndrome? Curr Heart Fail Rep. 

2009;6:281–286.  

33.  Roger VL, Herges RM, Hodge DO, Jacobsen SJ, Owan TE, Redfield MM. Trends 

in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. N 

Engl J Med. 2006;355:251–259.  

34.  Holmes JW, Borg TK, Covell JW. Structure and Mechanics of Healing Myocardial 

Infarcts. Annu Rev Biomed Eng. 2005;7:223–253.  

35.  Feild BJ, Russell RO, Dowling JT, Rackley CE. Regional left ventricular 

performance in the year following myocardial infarction. Circulation [Internet]. 

1972;46:679–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5072769 

36.  Capasso JM, Li P, Zhang X, Anversa P. Heterogeneity of ventricular remodeling 

after acute myocardial infarction in rats. Am J Physiol [Internet]. 1992;262:H486-

95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1539707 

37.  Mukherjee R, Brinsa TA, Dowdy KB, Scott AA, Baskin JM, Deschamps AM, 

Lowry AS, Escobar GP, Lucas DG, Yarbrough WM, Zile MR, Spinale FG. 

Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation. 

2003;107:618–625.  

38.  Corday E, Kaplan L, Meerbaum S, Brasch J, Costantini C, Lang TW, Gold H, 

Rubins S, Osher J. Consequences of coronary arterial occlusion on remote 

myocardium: Effects of occlusion and reperfusion. Am J Cardiol. 1975;36:385–

394.  

39.  Bogen DK, Needleman A, McMahon TA. An analysis of myocardial infarction. 

The effect of regional changes in contractility. Circ Res. 1984;55:805–815.  

40.  Chan W, Duffy SJ, White DA, Gao XM, Du XJ, Ellims AH, Dart AM, Taylor AJ. 

Acute left ventricular remodeling following myocardial infarction: Coupling of 

regional healing with remote extracellular matrix expansion. JACC Cardiovasc 

Imaging. 2012;5:884–893.  

41.  Eaton LW, Weiss JL, Bulkley BH, Garrison JB, Weisfeldt ML. Regional cardiac 

dilation after acute myocardial infarction. N Engl J Med. 1979;300:57–62.  

42.  Mirsky I, Pfeffer JM, Pfeffer M a, Braunwald E. The contractile state as the major 

determinant in the evolution of left ventricular dysfunction in the spontaneously 



www.manaraa.com

  

112 

 

hypertensive rat. Circ Res [Internet]. 1983;53:767–78. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/6640863 

43.  Wiegner  a W, Allen GJ, Bing OH. Weak and strong myocardium in series: 

implications for segmental dysfunction. Am J Physiol [Internet]. 1978;235:H776-

83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/736165 

44.  Zimmerman SD, Karlon WJ, Holmes JW, Omens JH, Covell JW. Structural and 

mechanical factors influencing infarct scar collagen organization. Am J Physiol 

Heart Circ Physiol [Internet]. 2000;278:H194-200. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/10644599 

45.  Omens JH, Milkes DE, Covell JW. Effects of pressure overload on the passive 

mechanics of the rat left ventricle. Ann Biomed Eng. 1995;23:152–163.  

46.  Zile MR, Baicu CF, Gaasch WH. Diastolic Heart Failure — Abnormalities in 

Active Relaxation and Passive Stiffness of the Left Ventricle. N Engl J Med 

[Internet]. 2004;350:1953–1959. Available from: 

http://www.nejm.org/doi/abs/10.1056/NEJMoa032566 

47.  Grossman W, Mclaurin LP, Stefadouros MA. Left Ventricular Stiffness Associated 

with Chronic Pressure and Volume Overloads in Man. Circ Res. 1974;35:793–800.  

48.  Spinale FG, Tomita M, Zellner JL, Cook JC, Crawford F a, Zile MR. Collagen 

remodeling and changes in LV function during development and recovery from 

supraventricular tachycardia. Am J Physiol. 1991;261:H308–H318.  

49.  Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, 

Palmer BM, Van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, 

LeWinter MM. Myocardial stiffness in patients with heart failure and a preserved 

ejection fraction contributions of collagen and titin. 2015.  

50.  Miyoshi H, Oishi Y, Mizuguchi Y, Iuchi A, Nagase N, Ara N, Oki T. Effect of an 

increase in left ventricular pressure overload on left atrial-left ventricular coupling 

in patients with hypertension: A two-dimensional speckle tracking 

echocardiographic study. Echocardiography. 2013;30:658–666.  

51.  Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni M, Gheorghiade M, Butler 

J. Mode of Death in Heart Failure With Preserved Ejection Fraction. J Am Coll 

Cardiol. 2017;69:556–569.  

52.  McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman 

JD, Ferguson JJ, Safian RD, Grossman W. Left ventricular remodeling after 

myocardial infarction: a corollary to infarct expansion. Circulation [Internet]. 

1986;74:693–702. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3757183 

53.  Pfeffer MA, Braunwald E. Ventricular Remodeling After Myocardial Infarction: 

Experiment Observations and Clinical Implications. Circulation. 1990;81:1161–

1172.  



www.manaraa.com

  

113 

 

54.  G.J. T, J.O. H. Predictors of clinical course, coronary anatomy and left ventricular 

function after recovery from acute myocardial infarction. Circulation [Internet]. 

1980;62:960–970. Available from: 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed1ab&NEW

S=N&AN=1981002174 

55.  Verma A, Meris A, Skali H, Ghali JK, Arnold JMO, Bourgoun M, Velazquez EJ, 

McMurray JJ V, Kober L, Pfeffer MA, Califf RM, Solomon SD. Prognostic 

Implications of Left Ventricular Mass and Geometry Following Myocardial 

Infarction. JACC Cardiovasc Imaging. 2008;1:582–591.  

56.  Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease: 

With special emphasis on volume, mass, and geometry. J Am Coll Cardiol. 

2011;58:1733–1740.  

57.  Romito E, Shazly T, Spinale FG. In vivo assessment of regional mechanics post-

myocardial infarction: A focus on the road ahead. J Appl Physiol. 2017;123:728–

745.  

58.  Romito E, Doviak H, Logdon C, Freels P, Shazly T, Spinale FG. Sonomicrometry-

Based Analysis of Post-Myocardial Infarction Regional Mechanics. Ann Biomed 

Eng [Internet]. 2016;44:3539–3552. Available from: 

http://link.springer.com/10.1007/s10439-016-1694-3 

59.  Gorman JHI, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, 

Bogen DK, Edmunds L.H. J. Dynamic three-dimensional imaging of the mitral 

valve and left ventricle by rapid sonomicrometry array localization. J Thorac 

Cardiovasc Surg. 1996;112:712–726.  

60.  Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging 

with MR imaging--a method for noninvasive assessment of myocardial motion. 

Radiology [Internet]. 1988;169:59–63. Available from: 

http://pubs.rsna.org/doi/10.1148/radiology.169.1.3420283 

61.  Strotmann JM, Hatle L, Sutherland GR. Doppler myocardial imaging in the 

assessment of normal and ischemic myocardial function--past, present and future. 

Int J Cardiovasc Imaging. 2001;17:89–98.  

62.  Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial Strain by 

Doppler Echocardiography Validation of a New Method to Quantify Regional 

Myocardial Function. Circulation [Internet]. 2000;102:1158–1164. Available 

from: http://circ.ahajournals.org/cgi/doi/10.1161/01.CIR.102.10.1158 

63.  Thomas G. Tissue Doppler echocardiography - a case of right tool, wrong use. 

Cardiovasc Ultrasound. 2004;2:12.  

64.  Choi JO, Cho SW, Song Y Bin, Cho SJ, Song BG, Lee SC, Park SW. Longitudinal 

2D strain at rest predicts the presence of left main and three vessel coronary artery 

disease in patients without regional wall motion abnormality. Eur J Echocardiogr. 



www.manaraa.com

  

114 

 

2009;10:695–701.  

65.  Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from global 

longitudinal speckle strain: Comparison with ejection fraction and wall motion 

scoring. Circ Cardiovasc Imaging. 2009;2:356–364.  

66.  Haugaa KH, Grenne BL, Eek CH, Ersbøll M, Valeur N, Svendsen JH, Florian A, 

Sjøli B, Brunvand H, Køber L, Voigt JU, Desmet W, Smiseth OA, Edvardsen T. 

Strain echocardiography improves risk prediction of ventricular arrhythmias after 

myocardial infarction. JACC Cardiovasc Imaging. 2013;6:841–850.  

67.  Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH. Differentiation of 

Subendocardial and Transmural Infarction Using Two-Dimensional Strain Rate 

Imaging to Assess Short-Axis and Long-Axis Myocardial Function. J Am Coll 

Cardiol. 2006;48:2026–2033.  

68.  Gjesdal O, Helle-Valle T, Hopp E, Lunde K, Vartdal T, Aakhus S, Smith HJ, Ihlen 

H, Edvardsen T. Noninvasive separation of large, medium, and small myocardial 

infarcts in survivors of reperfused ST-elevation myocardial infarction: a 

comprehensive tissue Doppler and speckle-tracking echocardiography study. Circ 

Cardiovasc Imaging. 2008;1.  

69.  Reant P, Labrousse L, Lafitte S, Bordachar P, Pillois X, Tariosse L, Bonoron-

Adele S, Padois P, Deville C, Roudaut R, Dos Santos P. Experimental Validation 

of Circumferential, Longitudinal, and Radial 2-Dimensional Strain During 

Dobutamine Stress Echocardiography in Ischemic Conditions. J Am Coll Cardiol. 

2008;51:149–157.  

70.  Sun JP, Niu J, Chou D, Chuang HH, Wang K, Drinko J, Borowski A, Stewart WJ, 

Thomas JD. Alterations of Regional Myocardial Function in a Swine Model of 

Myocardial Infarction Assessed by Echocardiographic 2-Dimensional Strain 

Imaging. J Am Soc Echocardiogr. 2007;20:498–504.  

71.  Sun QW, Zhen L, Wang Q, Sun Y, Yang J, Li YJ, Li RJ, Ma N, Li ZA, Wang LY, 

Nie SP, Yang Y. Assessment of Retrograde Coronary Venous Infusion of 

Mesenchymal Stem Cells Combined with Basic Fibroblast Growth Factor in 

Canine Myocardial Infarction Using Strain Values Derived from Speckle-Tracking 

Echocardiography. Ultrasound Med Biol. 2016;42:272–281.  

72.  Bachner-Hinenzon N, Malka A, Barac Y, Meerkin D, Ertracht O, Carasso S, Shofti 

R, Leitman M, Vered Z, Adam D, Binah O. Strain Analysis in the Detection of 

Myocardial Infarction at the Acute and Chronic Stages. Echocardiography. 

2016;33:450–458.  

73.  Barlow SC, Doviak H, Jacobs J, Freeburg LA, Perreault PE, Zellars KN, Moreau 

K, Villacreses CF, Smith S, Khakoo AY, Lee T, Spinale FG. Intracoronary 

delivery of recombinant TIMP-3 after myocardial infarction: effects on myocardial 

remodeling and function. Am J Physiol - Hear Circ Physiol [Internet]. 

2017;313:H690–H699. Available from: 



www.manaraa.com

  

115 

 

http://ajpheart.physiology.org/lookup/doi/10.1152/ajpheart.00114.2017 

74.  Lindsey ML, Bolli R, Canty JM, Du X-J, Frangogiannis NG, Frantz S, Gourdie 

RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, 

Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, 

Heusch G. Guidelines for experimental models of myocardial ischemia and 

infarction. Am J Physiol Circ Physiol [Internet]. 2018;314:H812–H838. Available 

from: http://www.physiology.org/doi/10.1152/ajpheart.00335.2017 

75.  Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left 

ventricular strain: A meta-analysis. J Am Soc Echocardiogr. 2013;26:185–191.  

76.  Hess OM, Koch R, Bamert C, Krayenbuehl HP, Policlinic M. Regional wall 

stiffness during acute myocardial ischaemia in the canine left ventricle *. 

1980;435–444.  

77.  Ross JJ. Is There a True Increase in Myocardial Stiffness with Acute Ischemia? 

Am J Cardiol. 1989;63:87E–91E.  

78.  Hayashida W, Van Eyll C, Rousseau MF, Pouleur H, The SOLVD Investigators. 

Regional remodeling and nonuniform changes in diastolic function in patients with 

left ventricular dysfunction: Modification by long-term enalapril treatment. J Am 

Coll Cardiol [Internet]. 1993;22:1403–1410. Available from: 

http://dx.doi.org/10.1016/0735-1097(93)90550-K 

79.  Park T, Nagueh SF, Khoury DS, Kopelen HA, Akrivakis S, Nasser K, Ren G, 

Frangogiannis NG, Helen A. Impact of myocardial structure and function 

postinfarction on diastolic strain measurements : implications for assessment of 

myocardial viability. 2005;77030:724–731.  

80.  Arunachalam SP, Arani A, Baffour F, Rysavy JA, Rossman PJ, Glaser KJ, Lake 

DS, Trzasko JD, Manduca A, Mcgee KP, Ehman RL, Araoz PA. Regional 

assessment of in vivo myocardial stiffness using 3D magnetic resonance 

elastography in a porcine model of myocardial infarction. Magn Reson Med. 

2017;00.  

81.  Gupta KB, Ratcliffe MB, Fallert M a, Edmunds LH, Bogen DK. Changes in 

passive mechanical stiffness of myocardial tissue with aneurysm formation. 

Circulation. 1994;89:2315–2326.  

82.  Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, 

Pasque MK. Mechanism underlying mechanical dysfunction in the border zone of 

left ventricular aneurysm: a finite element model study. Ann Thorac Surg. 

2001;71:654–662.  

83.  Jugdutt BI, Joljart MJ, Khan MI. Rate of Collagen Deposition During Healing and 

Ventricular Remodeling After Myocardial Infarction in Rat and Dog Models. 

Circulation. 1996;94:94–101.  



www.manaraa.com

  

116 

 

84.  Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular 

matrix as a modulator of the inflammatory and reparative response following 

myocardial infarction. J Mol Cell Cardiol [Internet]. 2010;48:504–511. Available 

from: http://dx.doi.org/10.1016/j.yjmcc.2009.07.015 

85.  Baxter SC, Morales MO, Goldsmith EC. Adaptive changes in cardiac fibroblast 

morphology and collagen organization as a result of mechanical environment. Cell 

Biochem Biophys. 2008;51:33–44.  

86.  Mukherjee R, Zavadzkas JA, Saunders SM, Mclean JE, Jeffords LB, Htl CB, 

Stroud RE, Leone AM, Koval CN, Rivers WT, Basu S, Sheehy A, Michal G, 

Spinale FG. Targeted Myocardial Microinjections of a Biocomposite Material 

Reduces Infarct Expansion in Pigs. Ann Thorac Surg. 2008;86:1268–1276.  

87.  Dorsey SM, McGarvey JR, Wang H, Nikou A, Arama L, Koomalsingh KJ, Kondo 

N, Gorman JH, Pilla JJ, Gorman RC, Wenk JF, Burdick J a. MRI evaluation of 

injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling 

after myocardial infarction. Biomaterials [Internet]. 2015 [cited 2015 Sep 

1];69:65–75. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S0142961215006638 

88.  Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact 

of the injection of material into the myocardium: A finite element model 

simulation. Circulation. 2006;114:2627–2635.  

89.  Collier P, Phelan D, Klein A, Fuster V. A Test in Context: Myocardial Strain 

Measured by Speckle-Tracking Echocardiography. J Am Coll Cardiol. 2017;6.  

90.  Alreshidan M, Shahmansouri N, Chung J, Lash V, Emmott A, Leask RL, 

Lachapelle K. Obtaining the biomechanical behavior of ascending aortic aneurysm 

via the use of novel speckle tracking echocardiography. J Thorac Cardiovasc Surg 

[Internet]. 2017;153:781–788. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S0022522316316804%0Ahttp://www.n

cbi.nlm.nih.gov/pubmed/28094007 

91.  Ishikawa K, Kawase Y, Ladage D, Chemaly ER, Tilemann L, Fish K, Sanz J, 

Garcia MJ, Hajjar RJ. Temporal changes of strain parameters in the progress of 

chronic ischemia: With comparison to transmural infarction. Int J Cardiovasc 

Imaging. 2012;28:1671–1681.  

92.  Komajda M, Carson PE, Hetzel S, McKelvie RS, McMurray JJV V, Ptaszynska A, 

Zile MR, Demets D, Massie BM. Factors associated with outcome in heart failure 

with preserved ejection fraction: findings from the Irbesartan in Heart Failure with 

Preserved Ejection Fraction Study (I-PRESERVE). Circ Heart Fail. 2011;4:27–

35.  

93.  Zile MR, Gaasch WH, Anand IS, Haass M, Little WC, Miller AB, Lopez-Sendon 

J, Teerlink JR, White M, McMurray JJ, Komajda M, McKelvie R, Ptaszynska A, 

Hetzel SJ, Massie BM, Carson PE. Mode of death in patients with heart failure and 



www.manaraa.com

  

117 

 

a preserved ejection fraction: Results from the irbesartan in heart failure with 

preserved ejection fraction study (I-Preserve) Trial. Circulation. 2010;121:1393–

1405.  

94.  Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ V, 

Michelson EL, Olofsson B, Östergren J. Effects of candesartan in patients with 

chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-

preserved trial. Lancet. 2003;362:777–781.  

95.  Ahmed A, Rich MW, Fleg JL, Zile MR, Young JB, Kitzman DW, Love TE, 

Aronow WS, Adams KF, Gheorghiade M. Effects of digoxin on morbidity and 

mortality in diastolic heart failure: The ancillary digitalis investigation group trial. 

Circulation. 2006;114:397–403.  

96.  Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The 

perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur 

Heart J. 2006;27:2338–2345.  

97.  Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, 

Anderson S, Donovan M, Iverson E, Staiger C, Ptaszynska A. Irbesartan in 

Patients with Heart Failure and Preserved Ejection Fraction. NEnglJMed. 

2008;2456–2467.  

98.  van Veldhuisen DJ, Cohen-Solal A, Böhm M, Anker SD, Babalis D, Roughton M, 

Coats AJS, Poole-Wilson PA, Flather MD. Beta-Blockade With Nebivolol in 

Elderly Heart Failure Patients With Impaired and Preserved Left Ventricular 

Ejection Fraction. Data From SENIORS (Study of Effects of Nebivolol 

Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J 

Am Coll Cardiol. 2009;53:2150–2158.  

99.  Persson H, Lonn E, Edner M, Baruch L, Lang CC, Morton JJ, Östergren J, 

McKelvie RS. Diastolic Dysfunction in Heart Failure With Preserved Systolic 

Function: Need for Objective Evidence. Results From the CHARM 

Echocardiographic Substudy-CHARMES. J Am Coll Cardiol. 2007;49:687–694.  

100.  Louridas G, Lourida K. Heart Failure in Patients with Preserved Ejection Fraction: 

Questions Concerning Clinical Progression. J Cardiovasc Dev Dis [Internet]. 

2016;3:27. Available from: http://www.mdpi.com/2308-3425/3/3/27 

101.  Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with 

Preserved Ejection Fraction: a &quot;Fishing Expedition&quot;. JACC Basic to 

Transl Sci. 2017;2:770–789.  

102.  Roh J, Houstis N, Rosenzweig A. Why don’t we have proven treatments for 

HFpEF? Circ Res. 2017;120:1243–1245.  

103.  Krum H, Teerlink JR. Medical therapy for chronic heart failure. Lancet [Internet]. 

2011;378:713–721. Available from: http://dx.doi.org/10.1016/S0140-

6736(11)61038-6 



www.manaraa.com

  

118 

 

104.  Morrissey RP, Czer L, Shah PK. Chronic heart failure: Current evidence, 

challenges to therapy, and future directions. Am J Cardiovasc Drugs. 

2011;11:153–171.  

105.  Bui, Anh L, Horwish, Tamara B, Fonarow, Gregg C. Epidemiology and risk 

profile of heart failure. Nat Publ Gr. 2012;8:1–25.  

106.  Lam CSP, Donal E, Kraigher-Krainer E, Vasan RS. Epidemiology and clinical 

course of heart failure with preserved ejection fraction. Eur J Heart Fail. 

2011;13:18–28.  

107.  Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart 

failure: Part I: Diagnosis, prognosis, and measurements of diastolic function. 

Circulation. 2002;105:1387–1393.  

108.  Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart 

failure: Part II. Causal mechanisms and treatment. Circulation. 2002;105:1503–

1508.  

109.  Yarbrough WM, Mukherjee R, Stroud RE, Rivers WT, Oelsen JM, Dixon JA, 

Eckhouse SR, Ikonomidis JS, Zile MR, Spinale FG. Progressive induction of left 

ventricular pressure overload in a large animal model elicits myocardial 

remodeling and a unique matrix signature. J Thorac Cardiovasc Surg [Internet]. 

2012;143:215–223. Available from: http://dx.doi.org/10.1016/j.jtcvs.2011.09.032 

110.  Ibrahim E-SH. Myocardial tagging by Cardiovascular Magnetic Resonance: 

evolution of techniques--pulse sequences, analysis algorithms, and applications. J 

Cardiovasc Magn Reson [Internet]. 2011;13:36. Available from: http://jcmr-

online.biomedcentral.com/articles/10.1186/1532-429X-13-36 

111.  Argulian E, Chandrashekhar Y, Shah SJ, Huttin O, Pitt B, Zannad F, Bonow RO, 

Narula J. Teasing Apart Heart Failure with Preserved Ejection Fraction 

Phenotypes with Echocardiographic Imaging: Potential Approach to Research and 

Clinical Practice. Circ Res. 2018;122:23–25.  

112.  Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, Zile 

MR, Voors AA, Lefkowitz MP, Packer M, McMurray JJ V, Solomon SD. 

Impaired systolic function by strain imaging in heart failure with preserved 

ejection fraction. J Am Coll Cardiol. 2014;63:447–456.  

113.  Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, Pitt B, Pfeffer MA, 

Solomon SD. Prognostic importance of impaired systolic function in heart failure 

with preserved ejection fraction and the impact of spironolactone. Circulation. 

2015;132:402–414.  

114.  Kato S, Koide M, Copper IV G, Zile MR. Effects of pressure- or volume-overload 

hypertrophy on passive stiffness in isolated adult cardiac muscle cells. Am J 

Physiol Heart Circ Physiol. 1996;271:2575–83.  



www.manaraa.com

  

119 

 

115.  Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. Fibrillar collagen 

and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res. 

1989;64:1041–1050.  

116.  Schnelle M, Catibog N, Zhang M, Nabeebaccus AA, Anderson G, Richards DA, 

Sawyer G, Zhang X, Toischer K, Hasenfuss G, Monaghan MJ, Shah AM. 

Echocardiographic evaluation of diastolic function in mouse models of heart 

disease. J Mol Cell Cardiol. 2018;114:20–28.  

117.  Zile MR, Adamson PB, Cho YK, Bennett TD, Bourge RC, Aaron MF, Jr JMA, 

Abraham WT, Kueffer FJ, Taepke RT. Hemodynamic Factors Associated With 

Acute Decompensated Heart Failure: Part 2-Use in Automated Detection. J Card 

Fail. 2011;17:282–291.  

118.  Zhao L, Cheng G, Jin R, Afzal MR, Samanta A, Xuan YT, Girgis M, Elias HK, 

Zhu Y, Davani A, Yang Y, Chen X, Ye S, Wang OL, Chen L, Hauptman J, 

Vincent RJ, Dawn B. Deletion of Interleukin-6 Attenuates Pressure Overload-

Induced Left Ventricular Hypertrophy and Dysfunction. Circ Res. 2016;118:1918–

1929.  

119.  Epstein AM, Jha AK, Orav EJ. The Relationship between Hospital Admission 

Rates and Rehospitalizations. N Engl J Med. 2011;365:2287–2295.  

120.  Batson G, Chandrasekhar K, Payas Y, Rickards D. Comparison of pulmonary 

wedge pressure measured by the flow directed Swan-Ganz catheter with left atrial 

pressure. Br Heart J. 1971;33:616.  

121.  Zile MR, Tanaka R, Lindroth JR, Spinale F, Carabello BA, Mirsky I. Left 

ventricular volume determined echocardiographically by assuming a constant left 

ventricular epicardial long-axis/ short-axis dimension ratio throughout the cardiac 

cycle. J Am Coll Cardiol [Internet]. 1992;20:986–993. Available from: 

http://dx.doi.org/10.1016/0735-1097(92)90202-X 

122.  Torres WM, Jacobs J, Doviak H, Barlow SC, Zile MR, Shazly T, Spinale FG. 

Regional and temporal changes in left ventricular strain and stiffness in a porcine 

model of myocardial infarction. Am J Physiol Circ Physiol [Internet]. 2018;958–

967. Available from: https://doi.org/10.1152/ajpheart.00279.2018 

123.  Stalling D, Westerhoff M, Hege H. Amira: A Highly Interactive System for Visual 

Data Analysis. Vis Handb. 2005;1:749–767.  

124.  Rigort A, Günther D, Hegerl R, Baum D, Weber B, Prohaska S, Medalia O, 

Baumeister W, Hege HC. Automated segmentation of electron tomograms for a 

quantitative description of actin filament networks. J Struct Biol. 2012;177:135–

144.  

125.  Weber B, Greenan G, Prohaska S, Baum D, Hege HC, Müller-Reichert T, Hyman 

AA, Verbavatz JM. Automated tracing of microtubules in electron tomograms of 

plastic embedded samples of Caenorhabditis elegans embryos. J Struct Biol. 



www.manaraa.com

  

120 

 

2012;178:129–138.  

126.  Blom AS, Mukherjee R, Pilla JJ, Lowry AS, Yarbrough WM, Mingoia JT, 

Hendrick JW, Stroud RE, McLean JE, Affuso J, Gorman RC, Gorman JH, Acker 

MA, Spinale FG. Cardiac support device modifies left ventricular geometry and 

myocardial structure after myocardial infarction. Circulation. 2005;112:1274–

1283.  

127.  Kitzman DW, Rich MW. Age Disparities in Heart Failure Research. JAMA. 

2010;304:1950–1951.  

128.  Laplace PS. Theorie de I’action capillarie. In: Traite de mecanique celeste. Paris: 

1806.  

129.  Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in 

the human left ventricle. J Clin Invest. 1975;56:56–64.  

130.  Mirsky I, Laks MM. Time Course of Changes in the Mechanical-Properties of the 

Canine Right and Left-Ventricles During Hypertrophy Caused by Pressure 

Overload. Circ Res. 1980;46:530–542.  

131.  Stroud JD, Baicu CF, Barnes MA, Spinale FG, Zile MR, Janicki JS, Dixon JA, 

Gorman RC, Stroud RE, Bouges S, Iii JHG, Martens TP, Itescu S, Schuster MD, 

Plappert T, John-sutton MGS. Viscoelastic properties of pressure overload 

hypertrophied myocardium : effect of serine protease treatment Viscoelastic 

properties of pressure overload hypertrophied myocardium : effect of serine 

protease treatment. 2013;5799:2324–2335.  

132.  Freedman BR, Bade ND, Riggin CN, Zhang S, Haines PG, Ong KL, Janmey PA. 

The (dys)functional extracellular matrix. Biochim Biophys Acta - Mol Cell Res. 

2015;1853:3153–3164.  

133.  Park DW, Sebastiani A, Yap CH, Simon MA, Kim K. Quantification of coupled 

stiffness and fiber orientation remodeling in hypertensive rat right-ventricular 

myocardium using 3D ultrasound speckle tracking with biaxial testing. PLoS One. 

2016;11:1–16.  

134.  Kouzu H, Yuda S, Muranaka A, Doi T, Yamamoto H, Shimoshige S, Hase M, 

Hashimoto A, Saitoh S, Tsuchihashi K, Miura T, Watanabe N, Shimamoto K. Left 

ventricular hypertrophy causes different changes in longitudinal, radial, and 

circumferential mechanics in patients with hypertension: A Two-dimensional 

speckle tracking study. J Am Soc Echocardiogr [Internet]. 2011;24:192–199. 

Available from: http://dx.doi.org/10.1016/j.echo.2010.10.020 

135.  Gaasch WH, Aurigemma GP. CMR imaging of extracellular volume and 

myocardial strain in hypertensive heart disease. JACC Cardiovasc Imaging. 

2015;8:181–183.  

136.  Gorgulu S, Norgaz T, Nurkalem Z, Ergelen M, Eksik A, Genc A, Zencirci AE. 



www.manaraa.com

  

121 

 

Comparison of left ventricular contractility in pressure and volume overload: a 

strain rate study in the clinical model of aortic stenosis and regurgitation. 

Echocardiography. 2010;27:798–802.  

137.  Phan TT, Shivu GN, Abozguia K, Gnanadevan M, Ahmed I, Frenneaux M. Left 

ventricular torsion and strain patterns in heart failure with normal ejection fraction 

are similar to age-related changes. Eur J Echocardiogr. 2009;10:793–800.  

138.  Spinale FG, Janicki JS, Zile MR. Membrane-associated matrix proteolysis and 

heart failure. Circ Res. 2013;112:195–208.  

139.  Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, 

Tarasoutchi F, Grinberg M, Rochitte CE. Prognostic significance of myocardial 

fibrosis quantification by histopathology and magnetic resonance imaging in 

patients with severe aortic valve disease. J Am Coll Cardiol. 2010;56:278–287.  

140.  Schubert A, Binner C. Extracellular matrix gene expression correlates to left 

ventricular mass index after surgical induction of left ventricular hypertrophy. 

2001;387:381–387.  

141.  Spinale FG. Matrix metalloproteinases: Regulation and dysregulation in the failing 

heart. Circ Res. 2002;90:520–530.  

142.  Goldsmith EC, Bradshaw AD, Spinale FG. Cellular mechanisms of tissue fibrosis. 

2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen 

expression. Am J Physiol Cell Physiol. 2013;304:C393-402.  

143.  Monrad ES, Hess OM, Nonogi H, Corin WJ, Krayenbuehl HP. Time course of 

regression of left ventricular hypertrophy after aortic valve replacement. 

Circulation. 1988;77:1345–1355.  

144.  Villari B, Vassalli G, Monrad ES, Chiariello M, Turina M, Hess OM. 

Normalization of diastolic dysfunction in aortic stenosis late after valve 

replacement. Circulation. 1995;91:2353–8.  

145.  Krayenbuehl HP, Hess OM, Monrad ES, Schneider J, Mall G, Turina M. Left 

ventricular myocardial structure in aortic valve disease before, intermediate, and 

late after aortic valve replacement. Circulation. 1989;79:744–755.  

146.  Hess OM, Ritter M, Schneider J, Grimm J, Turina M, Krayenbuehl HP. Diastolic 

stifness and myocardial structure in aortic valve disease before and after valve 

replacement. Circulation. 1989;79:744–755.  

147.  Roach MR, Burton AC. The reason for the shape of the distensibility curves of 

arteries. Can J Biochem Physiol. 1957;35:681–690.  

148.  Taber LA, Humphrey JD. Stress-Modulated Growth, Residual Stress, and Vascular 

Heterogeneity. J Biomech Eng. 2001;123:528.  

149.  Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel 



www.manaraa.com

  

122 

 

GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K. 

Perspectives on biological growth and remodeling. J Mech Phys Solids. 

2011;59:863–883.  

150.  Hariton I, DeBotton G, Gasser TC, Holzapfel GA. Stress-driven collagen fiber 

remodeling in arterial walls. Biomech Model Mechanobiol. 2007;6:163–175.  

151.  Taber LA. Biomechanics of Growth, Remodeling, and Morphogenesis. Appl Mech 

Rev [Internet]. 1995;48:487. Available from: 

http://appliedmechanicsreviews.asmedigitalcollection.asme.org/article.aspx?article

id=1395451 

152.  Fung YC. Stress, strain, growth, and remodeling of living organisms. Z angew 

Math Phys. 1995;46:S469–S482.  

153.  Weisman HF, Bush DE, Mannisi JA, Bulkley BH. Global cardiac remodeling after 

acute myocardial infarction: A study in the rat model. J Am Coll Cardiol 

[Internet]. 1985;5:1355–1362. Available from: 

http://linkinghub.elsevier.com/retrieve/pii/S073510978580348X 

154.  Klepach D, Lee LC, Wenk JF, Ratcliffe MB, Zohdi TI, Navia JL a, Kassab GS, 

Kuhl E, Guccione JM. Growth and remodeling of the left ventricle: A case study 

of myocardial infarction and surgical ventricular restoration. Mech Res Commun 

[Internet]. 2012 [cited 2015 Jan 15];42:134–141. Available from: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3390946&tool=pmcen

trez&rendertype=abstract 

155.  Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical 

implications: A consensus paper from an International Forum on Cardiac 

Remodeling. J Am Coll Cardiol. 2000;35:569–582.  

156.  Jacot JG, McCulloch AD, Omens JH. Substrate stiffness affects the functional 

maturation of neonatal rat ventricular myocytes. Biophys J [Internet]. 

2008;95:3479–87. Available from: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2547444&tool=pmcen

trez&rendertype=abstract 

157.  Janicki JS, Brower GL, Gardner JD, Chancey AL, Stewart JA. The dynamic 

interaction between matrix metalloproteinase activity and adverse myocardial 

remodeling. Heart Fail Rev. 2004;9:33–42.  

158.  Ertl G, Frantz S. Adverse cardiac remodeling: Phosphoinositide 3-kinase, another 

unique factor in a multifactorial condition. Circulation. 2012;126:2175–2176.  

159.  Spinale FG, Mukherjee R, Zavadzkas JA, Koval CN, Bouges S, Stroud RE, 

Dobrucki LW, Sinusas AJ. Cardiac restricted overexpression of membrane type-1 

matrix metalloproteinase causes adverse myocardial remodeling following 

myocardial infarction. J Biol Chem. 2010;285:30316–30327.  



www.manaraa.com

  

123 

 

160.  Yarbrough WM, Baicu C, Mukherjee R, Van Laer A, Rivers WT, McKinney RA, 

Prescott CB, Stroud RE, Freels PD, Zellars KN, Zile MR, Spinale FG. Cardiac-

restricted overexpression or deletion of tissue inhibitor of matrix 

metalloproteinase-4: differential effects on left ventricular structure and function 

following pressure overload-induced hypertrophy. Am J Physiol Heart Circ 

Physiol [Internet]. 2014;307:H752-61. Available from: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4187400&tool=pmcen

trez&rendertype=abstract 

161.  Mirea O, Duchenne J, Voigt J-U. Recent advances in echocardiography: strain and 

strain rate imaging. F1000Research [Internet]. 2016;5:787. Available from: 

http://f1000research.com/articles/5-787/v1 

162.  Picard MH, Adams D, Bierig SM, Dent JM, Douglas PS, Gillam LD, Keller A m, 

Malenka DJ, Masoudi FA, McCulloch M, Pellikka PA, Peters PJ, Stainback RF, 

Strachan GM, Zoghbia WA. American Society of echocardiography 

recommendations for quality echocardiography laboratory operations. J Am Soc 

Echocardiogr [Internet]. 2011;24:930. Available from: 

http://dx.doi.org/10.1016/j.echo.2010.11.006 

163.  Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, 

Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, 

Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. 

Recommendations for cardiac chamber quantification by echocardiography in 

adults: An update from the American society of echocardiography and the 

European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 

[Internet]. 2015;16:233–271. Available from: 

http://dx.doi.org/10.1016/j.echo.2014.10.003 

164.  Blessberger H, Binder T. Non-invasive imaging: Two dimensional speckle 

tracking echocardiography: basic principles. Heart [Internet]. 2010;96:716–22. 

Available from: http://www.ncbi.nlm.nih.gov/pubmed/20424157 

165.  Burns AT, La Gerche A, D’hooge J, Macisaac AI, Prior DL. Left ventricular strain 

and strain rate: Characterization of the effect of load in human subjects. Eur J 

Echocardiogr. 2010;11:283–289.  

166.  Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt JU. Head-to-

Head Comparison of Global Longitudinal Strain Measurements among Nine 

Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc 

Echocardiogr. 2015;28:1171–1181.  

167.  Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik 

AJ. Clinical Utility of Doppler Echocardiography and Tissue Doppler Imaging in 

the Estimation of Left Ventricular Filling Pressures : A Comparative Simultaneous 

Doppler-Catheterization Study. Circulation [Internet]. 2000;102:1788–1794. 

Available from: http://circ.ahajournals.org/cgi/doi/10.1161/01.CIR.102.15.1788 

168.  Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler 



www.manaraa.com

  

124 

 

tissue imaging: A noninvasive technique for evaluation of left ventricular 

relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–

1533.  

169.  Weiss J a., Maker BN, Govindjee S. Finite element implementation of 

incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech 

Eng. 1996;135:107–128.  

170.  Dorri F, Niederer PF, Lunkenheimer PP. A finite element model of the human left 

ventricular systole. Comput Methods Biomech Biomed Engin. 2006;9:319–341.  

171.  Goktepe S, Acharya SNS, Wong J, Kuhl E. Computational Modeling of passive 

myocardium. Int j numer method biomed eng. 2010;27:1–12.  

172.  Palit A, Bhudia SK, Arvanitis TN, Turley GA, Williams MA. Computational 

modelling of left-ventricular diastolic mechanics : Effect of fibre orientation and 

right-ventricle topology. J Biomech [Internet]. 2015;1–9. Available from: 

http://dx.doi.org/10.1016/j.jbiomech.2014.12.054 

173.  Maas SA, Ellis BJ, Ateshian GA, Weiss JA. FEBio: Finite Elements for 

Biomechanics. J Biomech Eng [Internet]. 2012;134:011005. Available from: 

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=143139

6 

174.  M Moerman K. GIBBON: The Geometry and Image-Based Bioengineering add-

On. J Open Source Softw [Internet]. 2018;3:506. Available from: 

http://joss.theoj.org/papers/10.21105/joss.00506 

175.  Hayashida W, Van Eyll C, Rousseau MF, Pouleur H, The SOLVD Investigators. 

Regional remodeling and nonuniform changes in diastolic function in patients with 

left ventricular dysfunction: Modification by long-term enalapril treatment. J Am 

Coll Cardiol. 1993;22:1403–1410.  

176.  Yarbrough WM, Mukherjee R, Brinsa T a, Dowdy KB, Scott A a, Escobar GP, 

Joffs C, Lucas DG, Crawford F a, Spinale FG. Matrix metalloproteinase inhibition 

modifies left ventricular remodeling after myocardial infarction in pigs. J Thorac 

Cardiovasc Surg [Internet]. 2003;125:602–10. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/12658202 

177.  Carew TE, Covell JW. Fiber orientation in hypertrophied canine left ventricle. Am 

J Physiol Hear Circ Physiol [Internet]. 1979;236:0. Available from: 

http://ajpheart.physiology.org/cgi/content/abstract/236/3/H487 

178.  Alreshidan M, Shahmansouri N, Chung J, Lash V, Emmott A, Leask RL, 

Lachapelle K. Obtaining the biomechanical behavior of ascending aortic aneurysm 

via the use of novel speckle tracking echocardiography. J Thorac Cardiovasc 

Surg. 2017;153:781–788.  

179.  Bell V, Mitchell WA, Sigurdsson S, Westenberg JJM, Gotal JD, Torjesen AA, 



www.manaraa.com

  

125 

 

Aspelund T, Launer LJ, de Roos A, Gudnason V, Harris TB, Mitchell GF. 

Longitudinal and circumferential strain of the proximal aorta. J Am Heart Assoc. 

2014;3:1–11.  

180.  Teien D, Karp K, Eriksson P. Non-invasive estimation of the mean pressure 

difference in aortic stenosis by Doppler ultrasound. Heart. 1986;56:450–454.  

181.  Jordan WD, Alcocer F, Wirthlin DJ, Westfall  a O, Whitley D. Abdominal aortic 

aneurysms in “high-risk” surgical patients: comparison of open and endovascular 

repair. Ann Surg [Internet]. 2003;237:623–630. Available from: 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt

=Citation&list_uids=12724628 



www.manaraa.com

 

 

126 

 

APPENDIX A 

JOURNAL PERMISSION FOR USE OF MANUSCRIPT 

 

Figure A.1: Permission from American Journal of Physiology – Heart and 

Circulatory Physiology to include published manuscript in this dissertation. 

Chapter 2 is included in this dissertation with permission from the publisher. 

Information can be found at <https://www.physiology.org/author-info.permissions> 


	University of South Carolina
	Scholar Commons
	Spring 2019

	Biophysical Analyses of Left Ventricular Remodeling Secondary to Myocardial Infarction and Left Ventricular Pressure Overload
	William Manuel Torres
	Recommended Citation


	tmp.1567090406.pdf.sZCAz

